
Petit Computer Help

2012 SmileBoom Co.,Ltd

All rights reserved

1. Introduction

1-1 About Petit Computer

This software is an easy-to-use BASIC programming language tool allowing you to

write your own BASIC programs. By utilizing DS Wireless Communications, you can

share your programs with friends, and receive images created by them. This will

allow you to collaborate to create programs.

1-2 User Agreement

 Programs and graphics created using this software can be shared with large

numbers of users. Please refrain from creating any content other users may find

offensive, or any content that might reveal personal information about yourself

or others, or violate any other party's intellectual property rights.

 You risk prosecution if any programs you create cause offence, are obscene, or

are libelous.

 Gamebridge accept no liability for any adverse consequences of any programs or

images users choose to share.

1-3 Program Precautions

 The BASIC language used in this software is not compatible with pre-existing

versions of BASIC. Please be aware of the differences in the programming

languages when attempting to port over older BASIC programs.

 This software uses fixed-point number representation, which can have large

margins of error for certain calculations, resulting in precision loss. This means

it should not be used for programs which require precise calculations.

 This software does not use branch instructions giving line numbers. Branch

instructions use the @ mark and the line tag for specific lines.

 Complex programs with increasing amounts of visual data can lead to a

reduction in processing speed.

 If commands that write to files such as SAVE, RECVFILE and DELETE are

repeatedly used, it may take longer to save or load these files.

 If you enter reserved commands in lower case letters, they will automatically be

converted to upper case.

 In this software, comparisons are represented using == for 'equals' and != for

'differs'. (Similar to the C programming language)

 When FOR commands are entered in this software, the conditions are

determined first. For a case like FOR I=0 TO -1 where STEP1 will not function, it

will skip the FOR command and carry on running the commands after NEXT.

Unlike existing BASIC programs, it is not guaranteed to carry out the command

once.

 This software's program text editing function allows you to store a maximum of

100 characters per line, with a maximum of 9999 lines. However, when the

memory allocated to saving text is exceeded, you will no longer be able to enter

text. The maximum number of characters you can use in a program is

approximately 520,000.

 Occasionally, graphics which you have included in your program are not properly

displayed on screen. This may be caused by a variety of factors, such as the

previously run program specifying that the display should be on the Lower

Screen. If this should occur, switch to Run Mode and run the following routine:

ACLS (Enter)

If your graphics are still not displayed, it may be because the color selected is

not visible, or the graphics are made up of transparent characters. In this case,

use the COLINIT or CHRINIT commands to reset the display.

 If the numbers you wish to use when performing divisions or other calculations

are all integers, use the FLOOR command. The calculation will then only be

performed using integers. When calculating coordinates, calculation errors may

combine to give slight inaccuracies.

 Keyboard input is detected via INKEY$(). However, the system requirements

mean that some keys will not be detected,

 Label names can be replaced by character string variables for a certain set of

commands. But this can only be done for those commands with which labels can

be used.

 A maximum of 16 channels can be used simultaneously for background music,

sound effects.

1-4 Controls

This software is a development tool, so its controls differ from those of normal

games.

+Control Pad Moves cursor in Edit Mode. (Press up and down while holding

down the L Button to scroll up and down one page at a time, and

press left and right to go to the start and end of a line.)

A,B,Y,X Button Can be used while a program is running. The Y Button functions

as backspace when in Edit Mode, while A functions as the Enter

key.

L,R Button This function like the Shift key on a keyboard, letting you input

the purple characters on the keyboard. It can be used while a

program is running.

START Button If you have a program saved, press START to run it. This can be

used while a program is running.

SELECT Button SELECT functions like the ESC key when programs are running.

In Run Mode, the screen display can be reset by simultaneously pressing left on the

+ Control Pad, the R Button, and START. This also restores the font to its default,

making it useful after a game program when elements of the display are difficult to

view.

1-5 What is a Program?

Computers are marvelous machines that can do all manner of things, from following

people's instructions and displaying certain images on screen, to playing sounds or

detecting what is inputted via the Touch Screen.

A program is a set of instructions that tells the computer precisely what to do. Petit

Computer uses a language called BASIC, and its structure is close to the grammar

we use every day to communicate.

For example:

Display text on screen with a PRINT command

 Play a sound with a BEEP command

 Draw a circle on screen with a GCIRCLE command

 Display a character with an SPSET command

 Store a certain number in the memory by

 Assigning a variable

 Find out the value of a number using

 Comparison and branch commands

 Save your program with a SAVE command

BASIC has a huge range of instructions to get the computer to do what you want it

to. While it would be hard work to remember every single command, if you try out

different commands, you'll learn them little by little and be able to program games

and tools.

It may be challenging at first, but this software is all you need to create and run your

very own programs. Of course, sometimes you might enter the wrong command by

mistake, creating a bug.

Many of the programmers who create video games got started by using BASIC. If

you've set your sights on developing games in the future, this is a great way to

experience the fun of programming first-hand.

1-6 Glossary

Term Info

Characters The 8x8 pixel 16-color images used to make up sprites and BG

screens.

Color There are 256 colors available for graphics, sprites and BG

(background).

(0 is transparent)

Palette The range of colors that can be used for graphics and

characters.

1 palette= 16 colors (0 is transparent)

Background(BG) A display function where the screen is covered in characters,

used for example on map screens.

Sprite A function that can display up to 100 animated characters.

System Icons Icon buttons used to switch between modes and tools.

Pixel The colored dots that make up the images and characters on

screen.

Frame A unit for determining length an image is displayed for.

1 frame = 1/60th sec

VSYNC This is function that refreshes the screen display. The smallest

unit of time for the screen to be refreshed is a single frame.

File The memory assigned to saving programs and images you have

created.

Resources The general name used in BASIC for images and programs read

from files. Some are saved in the internal memory, while others

are saved in the video memory.

Track This is the source from where background music is played. Music

can be played using a maximum of 8 tracks simultaneously.

Channel This is the unit in which MML music is played. A maximum of 8

types of instrument can be played at the same time.

MML Music Macro Language

This refers to the command strings used create music.

Start Point x

Start Pont y

The coordinates (X=horizontal, y=vertical) for the top left point

of a rectangular area.

End Pont x

End Point y

The coordinates (X=horizontal, y=vertical) for the bottom right

point of a rectangular area.

Transfer

Destination x

Transfer

Destination y

The coordinates (X=horizontal, y=vertical) for the top left point

of the rectangular area of the transfer destination.

2. Home Menu

2-1 About the Home Menu

A range of options for Petit Computer are accessible from this menu, and you will

return here after programs end. Select from the following 5 options:

2-1-1 Write Program

Launch Petit Computer. Touch this button when you want to write programs.

2-1-2 View Gallery

Select a program you wish to run from a list of saved programs.

2-1-3 File Management

Copy, rename or delete saved files, or transmit and receive data.

2-1-4 Help

View the instruction manual for Petit Computer as well as a list of BASIC

commands.

2-1-5 DSi Menu

Exit Petit Computer and return to the DSi menu.

2-2 Create Program

See “Create Program (detail)” to learn how to use Petit Computer.

2-3 View Programs

This lets you select and run programs and samples, Touching the Run button will

launch Petit Computer and run the program.

 Reached end of program

 Error in program

 ESC key or Cancel button pressed

 SELECT pressed

 END command run in program

In any of the cases listed above, the program that is currently running will be

cancelled you will exit Petit Computer and return to the Home Menu. All current

variable data will be lost when the program finishes. Utilize the SAVE command to

store data if required. When running programs in this mode, use the Edit button to

view the program list.

2-4 File Management

See “File Management (detail)” for more information on managing files.

3 File Management(detail)

3-1 Change Name

This function allows you to rename your saved files by following the instructions

below:

3-1-1 Select file you wish to rename.

3-1-2 Change the name using the simplified keyboard.

3-1-3 The file will now have been renamed.

3-2 Delete File

This function allows you to delete saved files by following the instructions below:

3-2-1 Select the file you wish to delete.

3-2-2 Confirm that you wish to delete the selected file.

3-2-3 The file will now have been deleted.

3-3 Send File

This function allows you to send saved files to other users by following the

instructions below:

3-3-1 Select the file you wish to send.

3-3-2 Dialog box will appear.

(The operation is then identical to that performed by the SENDFILE command.)

3-4 Receive File

This function allows you to receive files from other users by following the

instructions below:

3-4-1 Enter the name of the file you wish to receive.

3-4-2 Dialog box will appear.

(The operation is then identical to that performed by the RECVFILE command.)

3-5 Read QR Code

While reading QR codes, the system's processing power is focused on this

operation, so scrolling may stop and buttons become temporarily less responsive.

This function allows you to use the external camera to read special QR codes for use

with Petit Computer. To read QR codes and create files, follow the instructions

below:

3-5-1 Line up the first QR code so that it is within the red frame

3-5-2 When the QR Code is detected, the number of pages will be displayed.

3-5-3 The required number of pages will be read.

3-5-4 After the pages are read, the file will be created."

3-6 Save to SD Memory Card

"This function allows you to copy saved files onto an SD Memory Card by following

the instructions below:

3-6-1 Select the file you wish to write

3-6-2 The writing process will begin

3-6-3 The selected file will be written onto the SD Memory Card

\private\ds\app\4B4E414A\File Name

Once the file has been successfully written to the SD Memory Card, the folder above

will be created and the administrative file will be accessed.

<Please Note When Transferring Files>

Not enough available space on Memory Card/Write-Protect switch ON:

In these cases, it will not be possible to transfer data onto the SD Memory Card.

Please ensure that there is enough space and that the Write-Protect switch on your

SD Memory Card is OFF.

The properties of files on SD Memory Cards are not accessible, meaning that users

will be unable to view details of the files. Please refrain from trying to analyze or

modify file contents.

3-7 Create QR Code Tool

You cannot retrieve files saved to SD Memory Cards, but file contents can be viewed

and QR Codes created by making use of a free online application via your web

browser. For more details, please see the official Petit Computer homepage.

4 Create Program (detail)

Touch the 'Create Program' button on the Home Menu to launch SmileBASIC.

SmileBASIC has the following three modes:

●Run Mode

You can enter directly executable commands using the keyboard. (Switch from Edit

Mode with the Run button.)

●Edit Mode

An editing function that allows you to write program source code. (Switch from Run

Mode with the Edit button.)

●Help

See instructions for programming and a list of BASIC commands. (Switch with

Manual button.)

4-1 Switching Modes

Use the System Icons to switch modes.

System Icons (in Run Mode)

１ Manual Icon

This explains how to use this software.

２ Run Mode Icon

Switches to Run Mode.

３ Edit Mode Icon

Switches to the Edit Mode to edit text.

４ User System Icon Area

Can be used within programs.

System Icons (in Edit Mode)

５ Copy

Copy the line at current cursor position.

６ Paste

Insert a copied line into the program at current cursor position.

4-2 Run Mode

This mode allows you to run programs you have written. To run programs written in

Edit Mode, enter RUN using the keyboard and touch the Enter key. In Run Mode you

can also save and load programs.

Upper Screen: Console

Commands entered using the keyboards are displayed here.

Lower Screen: Keyboard display

Input Switch Button

A ABC

♥ Symbols

ア Kana

Touching the Input Switch button will change the characters available on the

keyboard. Pressing SHIFT will enable you to input further characters. In Run Mode,

PNLTYPE will not switch the keyboard.

"Delete files saved using the SAVE command or change file names in Run Mode.

For more details, see 12 ◎Run Mode Commands."

4-3 Edit Mode

Write your own programs in Edit Mode. The varieties of commands at your disposal

give you plenty of scope to create programs in your own way. To see the commands

you can use, open this manual and refer to the sections on commands and functions.

・Upper Screen: Source display

Displays strings entered using the keyboard. Line numbers are automatically added

when page breaks are inserted. Up to 100 characters per line can be displayed on

screen. If the line is too long to be displayed, the line will scroll horizontally to display

the other characters.

・Lower Screen: Keyboard display

As in Run Mode, touching the Input Switch button will change the keyboard.

4-4 Command Entry Support

If you forget commands when writing a program, you can enter letters and numbers

to search for a list of suggested commands and functions.

1) Suggestion List

Choose from suggested commands and functions in the white area below the

function keys on the lower screen.

2) Initial Suggestion Screen

Press the G key on the keyboard and all the commands and functions beginning with

that letter will be listed.

3) Narrowing Down the List

If you then press the C key on the keyboard, the list of suggestions will be narrowed

down to those beginning with GC.

4) Selecting a Suggestion

If you find the term you are looking for, touch it and it will be entered in your

program. This reduces the time it takes to enter a command such as GCIRCLE.

When there are too many terms to fit in the Suggestion List, press this button

to go to the next page.

4-5 Searching (in Edit Mode)

Touch the magnifying glass icon at the bottom right of the keyboard in Edit Mode and

you will be able to enter a search term below the function keys. This is useful when

you are writing a long program and wish to quickly search for labels and function

names.

Enter the search term and press ENTER to begin the search. By pressing up or down

on the +Control Pad, you can indicate whether to search above or below the current

line in the program. Press the magnifying glass icon again to exit Search Mode.

4-6 Writing Simple Programs

Here's a step-by-step guide to writing a program that will display strings on the

console screen and play sound. After starting Petit Computer, execute the following

commands, ensuring you have not run any sample programs beforehand. (When

there are no programs, you will always start in Run Mode)

1) Touch the Edit button to enter Edit Mode.

2) Enter PRINT ""WORDS"" in the first line.

3) Enter BEEP in the second line.

 0001 PRINT ""WORDS""

 0002 BEEP

4) Touch the Run button to enter Run Mode.

5) Input RUN (Enter).

WORDS

OK

Text will be displayed on screen, and a sound will be played. It is also possible to run

commands directly in Run Mode.

GLINE 0,0,255,191,15 (Enter)

This command will draw a diagonal line from the top left of the upper screen to the

bottom right.

GCLS (Enter)

This command will remove the line without affecting the text. When you're

experimenting with different commands to find out precisely what they do, it's a

good idea to do it directly in Run Mode.

5 Sample File

This software includes the following sample programs. For more details, see the

programming code for each.

5-1 Using Sample Files

1) Go to Run Mode

2) EXEC"SAMPLE2" (Press Enter)

3) Press SELECT to pause

4) View program in Edit Mode

By entering other sample names instead of the SAMPLE2 contained within the "",

you can check out other sample programs. You are also free to save any of the

samples included in the software under different names. You can then tweak them

to your heart's content without needing approval from SmileBoom first.

5-2 Basic Samples

These are simple programs designed to teach users how to use the standard

commands in BASIC. You can view the programs in Edit Mode and use them as a

reference when writing your own BASIC programs.

File Name Description

SAMPE1 Displays characters on the console.

SAMPLE2 A simple character-input calculator.

SAMPLE3 A simple piano program using the keyboard.

SAMPLE4 A number-guessing game.

SAMPLE5 A bio-rhythm program.

SAMPLE6 A lower screen sequencer.

SAMPLE7 A shooting game with moving foes.

SAMPLE8 A program demonstrating useful commands that control variables.

SAMPLE9 A demo using sprites and background (BG).

SAMPLE10 A demo using multi-page graphic screens.

SAMPLE11 A program demonstrating music created and played using

MML(Music Macro Language).

SAMPLE12 A program showing you how to create you own unique instrumental

sounds.

5-3 Advanced Samples

These are advanced programs using a wide variety of BASIC commands. Each of

these samples can also be used when you make your own games. You can view the

programs in Edit Mode, and once you have mastered the BASIC commands, you can

add your own unique features.

File Name Description

CHRED A character creation tool.

SCRED A background screen creation tool.

GRPED A 256-color graphic tool.

DRWED A drawing tool that stores elements in units such as lines and

squares.

GAME1 A racing game where you erase on-screen dots.

GAME2 A dungeon-crawling RPG.

GAME3 Blast intergalactic foes in a vertically-scrolling shoot-em-up.

GAME4 A shooting game where you dodge a barrage of bullets while taking

out enemies.

GAME5 A fighting game where giant characters do battle.

5-4 Character Creation Tool

EXEC "CHRED" (Press Enter to Run)

This tool can be used to create character data for backgrounds or sprites.

Select color samples and tools and input them in the Edit Area. Press A Button to

access File Mode, enter L (or S) and then press ENTER to load or save. You can

access and use saved data via programs.

(ex.) LOAD "BGU0:MYBG00"

5-5 BG Screen Creation Tool

EXEC "SCRED" (Press Enter to Run)

This is a tool for creating BG screen data, for example, creating rows of

houses. Select a character from the samples to paste them to the Edit Area. You can

access and use saved data via programs.

(ex.) LOAD "SCU0:MYSC00"

5-6 Graphic Creation Tool

EXEC "GRPED" (Press Enter to Run)

This is a tool for creating graphic data for the graphics Screen, utilizing up

to 256 colors. Select a color from the samples and draw a picture in the Edit Area.

You can access and use saved data via programs.

(ex.) LOAD "GRP0:MYGRP00"

5-7 DRWED (Drawing Pictures)

EXEC "DRWED" (Press Enter to Run)

This drawing tool can store up to 8000 commands for drawing elements

such as lines and squares. It differs from pixel art by allowing you to replay stored

data and adjust the picture as many times as you like. The picture data is stored on

the upper screen in the form of colors.

To learn more about how this tool recreates pictures using stored color data, view its

program in Edit Mode. You can take the elements used to recreate images and use

these in your own programs.

6 Sample Games

These are sample games that have been created using Petit Computer. You can view

the code for these games in Edit Mode. Feel free to adapt the program to your own

needs, making enemies weaker, for example, or adjusting the speed of bullets.

6-1 GAME 1 (Road Racer)

EXEC "GAME1" (Press Enter to Run)

Steer your car with the +Control Pad, aiming to pass over all the dots on the screen.

Your car will accelerate as it passes over dots.

6-2 GAME 2 (3D Dungeon Crawler)

EXEC "GAME2" (Press Enter to Run)

In this RPG, you'll use the +Control Pad to head to the top of the dungeon while

bashing beasts and picking up items such as medicine and weapons.

6-3 GAME 3 (Side-On Shooter)

EXEC "GAME3" (Press Enter to Run)

Use the +Control Pad to move and the A Button to shoot as you zap the incoming

enemies and take aim at the big boss.

6-4 GAME 4 (Barrage Blaster)

EXEC "GAME4" (Press Enter to Run)

Advanced sprite commands fill the screen with foes and firepower. Avoid enemy

strikes, blast your enemies and take on the giant boss. The scrolling background has

three layers.

6-5 GAME 5 (Sword Fight)

EXEC "GAME5" (Press Enter to Run)

Two vast screen-filling characters wield mighty swords as they duel to the death.

7 SPRITE

7-1 SPU0 - 1(0-127)

SPU0: Standard Game Elements

SPU1: Young Boy & Sorceress

7-2 SPU2 – 3(128-255)

SPU2: Smaller Enemies etc.

SPU3: Effects, Items etc.

7-3 SPU4 – 5(256-383)

SPU4: Flying Objects

SPU5: Larger Enemies, Explosions etc.

7-4 SPU6 – 7(384-511)

SPU6: Larger Horizontal Enemies

SPU7: Battleship

7-5 SPS

Standard Characters for Lower Screen

7-6 System Icons

Standard Icons for Tools etc.

8 Character List (Background)

8-1 BGU0(0-255)

8-2 BGU1(256-511)

8-3 BGU2(512-767)

8-4 BGU3(768-1023)

9 Sound-Related Table

Preset commands and other items related to background music, BEEP and TALK are

gathered in one table.

9-1 Preset Music

No. Info

0 Jolly and Jaunty

1 Dark and Dank

2 Tension is Rising

3 Upbeat Emotion

4 Opening Jingle

5 Clear Jingle

6 Game Over

7 Menu Select

8 Result Screen

9 Staff List

10 Staff List 2

11 Classical Drama

12 Marching Band

13 Ultra-hard Rock

14 Jolly and Jaunty 2

15 WOND

16 Deep in Thought

17 WOND2

18 For the Future

19 BAL

20 BAL_2

21 Espionage

22 SCI

23 Shooting Song

24 Pad

25 SEN

26 Pure

27 ROA

28 CUA

29 FIG

9-2 Preset Sound Effects

No. Info

0 Beep

1 Noise

2 Cursor Movement

3 Confirm

4 Cancel

5 Ascend

6 Descend

7 Coin

8 Jump

9 Land

10 Fire

11 Damage

12 Metal

13 Explosion

14 Scream

15 Brake

16 Banjo

17 Synth Strings

18 Synth Brass

19 Synth Bass

20 Guitar

21 Organ

22 Piano

23 Cow Bell

24 Tom-Toms

25 Cymbals

26

27 ROA

28 CUA

29 FIG

30 Snare Drum

31 Bass Drum

32 OK2

33 BALL

34 Japan Style

35 VOLT

36 AUTO

37 SHOCK

38 ESC

39 Banjo 2

40 Scratching

41 Guitar 2

42 Organ 2

43 Piano 2

44 PASS

45 UP2

46 Record

47 Synth Tom-Toms

48 Cow Bell 2

49 Metro

50 Tri

51 Conga

52 Dance BD

53 Dance SD

54 Dance HH

55 Hit

56 Timpani

57 Chinese Cymbal

58 Mini Cymbal

59 Shaker

60 Bell

61 Japanese Drum

62 Synthesizer

63 Canorus

64 Puff!

65 Nohkan

66 Humandr1

67 Humandr2

68 Dog

69 Cat

9-3 MML Commands

Music Macro Language is abbreviated to MML. Commands express elements of

music such as intervals, note length, pitch, tone, and volume.

General Music Commands

: Value Channel Select(:0-:7)

A single piece of music can be played using up to 8 channels.

(Please ensure that the channels are written with the lowest

number first.)

T Value Temp(T1-T240)

$ variable

number = value

Replacing Variables

Enters a value in place of the designated variable.

Variable numbers (0-7), Values (0-255)

Use BGMSETV to write from a program, or read using

BGMGETV(). These values can be used in commands marked

with ●

Commands for Sound Duration

L Value Default Sound Duration(L1-L192)

To add a dot to a note, follow the desired duration with a full stop

e.g. L4.

Q Value Gate Time (Q0-Q8)

This refers to the relationship between the length of time a

sound is actually played for and the time it is audible for.

& Tie(Slur)

This refers to joining two sounds together to create a longer

sound.

Commands Relating to Pitch and Scale

CDEFGAB

Designating Scale

C=Do, D=Re, E=Mi, F=Fa, G=So, A=La, B=Ti.

C# D# E# F#

G# A# B#

(# can also be

represented by

+)

C- D- E- F- G- A-

B-

For semitones, # or - are added. Notes will be played for the

default duration, but by appending lengths directly after the

note name, e.g. G4E#16, you can adjust the length of time

notes are played for.

R

Rests

As with scales, the duration of rests can be appended to the end.

N Value

(O4C=40)

Designating Interval Values (N0-N127)

Press the button to adjust the value that corresponds to the

interval duration.

O Value Octave (O0-O8)

This value changes the octave in which notes are played.

< Go to Higher Octave

> Go to Lower Octave

@D Value Detune (@D-128-@D127)

This subtly distorts the sound waves to give a detuned effect.

_(underscore) Portamento

This allows you to slide smoothly between two sound

frequencies.

Commands Relating to Volume and Panning

V Value Velocity (V0-V127)

This adjusts volume when playing scales.

(Value Increase Velocity ((0-(127)

This refers to the relationship between the length of time a

sound is actually played for and the time it is audible for.

) Value Reduce Velocity ((0-(127)

P Value Panpot (P0-P127)

This value determines the panning between left and right

channels. P64=Center.

@V Value Channel Volume (@V0-@V127)

This adjusts channel volume.

Commands Relating to Tone

@ Value

Values above

@144 for tone

will make this

sound louder

than the

instrumental

track.

Tone (@0-@255)

This adjusts volume when playing scales.

This allows you to change the instrument type.

0-127 GM Compatible Instruments

128-129 Drum Set

144-150PSG (Programmable Sound Generator)

151 Noise

224-255 User Defined Waveforms

@ E Value

Attack

Value Decay

Value Sustain

Value Release

Lower ADSR

values slow the

speed at which

the sound is

played, while

higher values

speed it up.

Define Envelope

This function lets you adjust the way the sound is played.

The value range for each element is 0-127.

(e.g.) ""@E0,99,64,64"

@ER Deactivating Envelope

Commands Relating to Special Controls

[

Start Loop

Up to 3 elements can be nested within a loop.

] Value

End Loop (0～255) ●

This returns the sound being played to before the start of the

preceding Start Loop command. (If this value is zero or

undefined, the loop will be endless.)

An error will occur when saving MML commands if loop commands do not contain

scale, rest, and N values.

Commands Relating to Macro Definition

{Label=MML} Macro Definition

Definition regularly-used phrases (labels can be up to 8

characters long)

{Label}

Using Macro Definition

Use pre-defined MML phrases.

Commands Relating to Performance

@MON Modulation ON

This activates modulation previously assigned with @MA, @MP.

@MOF

Modulation OFF

This cancels modulation.

@MA Value

Depth,

Value Range,

Value Speed,

Value Delay

Tremolo

This function adjusts the tremolo effect on notes, rapidly

repeating the same note.

(e.g.) "@MA0,99,64,64"

@MP Value

Depth,

Value Range,

Value Speed,

Value Delay

Vibrato

This function varies the degree to which a vibrating effect is

applied to notes.

(e.g.) "@MP0,99,64,64"

@MA and @MP cannot be used at the same time. These effects can be heard as soon

as these settings are applied.

9-4 Standard Instruments (@0～@127)

No. Instrument

0 Acoustic Grand Piano

1 Bright Acoustic Piano

2 Electric Grand Piano

3 Honky-tonk Piano

4 Electric Piano 1

5 Electric Piano 2

6 Harpsichord

7 Clavi

8 Celesta

9 Glockenspiel

10 Music Box

11 Vibraphone

12 Marimba

13 Xylophone

14 Tubular Bells

15 Dulcimer

16 Drawbar Organ

17 Percussive Organ

18 Rock Organ

19 Church Organ

20 Reed Organ

21 Accordion

22 Harmonica

23 Tango Accordion

24 Acoustic Guitar(nylon)

25 Acoustic Guitar(steel)

26 Electric Guitar(jazz)

27 Electric Guitar(clean)

28 Electric Guitar(muted)

29 Overdriven Guitar

30 Distortion Guitar

31 Guitar Harmonics

32 Acoustic Bass

33 Electric Bass(finger)

34 Electric Bass(pick)

35 Fretless Bass

36 Slap Bass 1

37 Slap Bass 2

38 Synth Bass 1

39 Synth Bass 2

40 Violin

41 Viola

42 Cello

43 Contrabass

44 Tremolo Strings

45 Pizzicato Strings

46 Orchestral Harp

47 Timpani

48 String Ensembles 1

49 String Ensembles 2

50 Synth Strings 1

51 Synth Strings 2

52 Voice Aahs

53 Voice Oohs

54 Synth Voice

55 Orchestra Hit

56 Trumpet

57 Trombone

58 Tuba

59 Muted Trumpet

60 French Horn

61 Brass Section

62 Synth Brass 1

63 Synth Brass 2

64 Soprano Sax

65 Alto Sax

66 Tenor Sax

67 Baritone Sax

68 Oboe

69 English Horn

70 Bassoon

71 Clarinet

72 Piccolo

73 Flute

74 Recorder

75 Pan Flute

76 Blown Bottle

77 Shakuhachi

78 Whistle

79 Ocarina

80 Lead 1(square)

81 Lead 2(sawtooth)

82 Lead 3(calliope)

83 Lead 4(chiff)

84 Lead 5(charang)

85 Lead 6(voice)

86 Lead 7(fifths)

87 Lead 8(bass+lead)

88 Pad 1(new age)

89 Pad 2(warm)

90 Pad 3(polysynth)

91 Pad 4(choir)

92 Pad 5(bowed)

93 Pad 6(metallic)

94 Pad 7(halo)

95 Pad 8(sweep)

96 FX 1(rain)

97 FX 2(soundtrack)

98 FX 3(crystal)

99 FX 4(atmosphere)

100 FX 5(brightness)

101 FX 6(goblins)

102 FX 7(echoes)

103 FX 8(sci-fi)

104 Sitar

105 Banjo

106 Shamisen

107 Koto

108 Kalimba

109 Bag pipe

110 Fiddle

111 Shanai

112 Tinkle Bell

113 Agogo

114 Steel Drums

115 Woodblock

116 Taiko Drum

117 Melodic Tom

118 Synth Drum

119 Reverse Cymbal

120 Guitar Fret Noise

121 Breath Noise

122 Seashore

123 Bird Tweet

124 Telephone Ring

125 Helicopter

126 Applause

127 Gunshot

9-5 Drums (@128-@129)

Select tone with @128 (or @129) and percussion will be played to fit with scales

between O3B～O5A.

No. Instrument

O1B Acoustic Bass Drum 2 909BD

O2C Acoustic Bass Drum 1 808BD

O2C# Side Stick ←

O2D Acoustic Snare 808SD

O2D# Hand Clap ←

O2E Electric Snare 909SD

O2F Low Floor Tom 808Tom LF

O2F# Closed Hi-hat 808CHH

O2G High Floor Tom 808Tom HF

O2G# Pedal Hi-hat 808CHH

O2A Low Tom 808Tom L

O2A# Open Hi-hat 808OHH

O2B Low-Mid Tom 808Tom LM

O3C High Mid Tom 808Tom HM

O3C# Crash Cymbal 1 808Cymbal

O3D High Tom 808Tom H

O3D# Ride Cymbal 1 ←

O3E Chinese Cymbal ←

O3F Ride Bell ←

O3F# Tambourine ←

O3G Splash Cymbal ←

O3G# Cowbell 808Cowbell

O3A Crash Cymbal 2 ←

O3A# Vibra-slap ←

O3B Ride Cymbal 2 ←

O4C High Bongo ←

O4C# Low Bongo ←

O4D Mute Hi Conga 808Conga MH

O4D# Open Hi Conga 808Conga OH

O4E Low Conga 808Conga L

O4F High Timbale ←

O4F# Low Timbale ←

O4G High Agogo ←

O4G# Low Agogo ←

O4A Cabasa ←

O4A# Maracas 808Maracas

O4B Short Whistle ←

O5C Long Whistle ←

O5C# Short Guiro ←

O5D Long Guiro ←

O5D# Claves 808Claves

O5E Hi Wood Block ←

O5F Low Wood Block ←

O5F# Mute Cuica ←

O5G Open Cuica ←

O5G# Mute Triangle ←

O5A Open Triangle ←

9-6 PSG and Waveforms (@144-@255)

No. Instrument

144

145

146

147

148

149

150

151

PSG - Duty Rate 12.5%

PSG - Duty Rate 25.0%

PSG - Duty Rate 37.5%

PSG - Duty Rate 50.0%

PSG - Duty Rate 62.5%

PSG - Duty Rate 75.0%

PSG - Duty Rate 87.5%

Noise

224

：

255

*Waveforms created by the user with the BGMPRG command

10 BASIC Standard Features

Petit Computer Standard features and Limitations.

10-1 Basic Components

Characters Multi-byte characters are used.

Character

Types

Numbers, alphabet and symbols are available.

Numerical

Values

32 bit fixed-point numbers are used (with fractions rounded up).

4096 is treated as 1.0

Integers within the range of ±524287 can be used.

Values outside the range will not be recognized.

Hexadecimal

(Base 16)

Notation

&H

Binary

Notation

&B

Variables Should be expressed within a maximum of 16 characters, starting

with alphabetical characters. The character _ will also be recognized.

For string variables, add $ at the end of the name.

(ex.) ANS=75:C$="TEXT"

Array There is a total of 32768 possible elements, in two dimensions.

Parentheses are either () or []. Subscript starts from 0.

(ex.) The range of DIM NO(10) is from NO(0) to NO(9)

A maximum of 4096 variables can be used in character strings.

The defined array and the number of variables actually used may

vary.

If the maximum is exceeded, it will result in an error.

Multiple

Commands

Possible (use : (colons) to split)

Sub-Routines

and Nesting

No limits. FOR~NEXT can be used in same way (within limits of

available memory)

File Control

Structure

When files are being saved or loaded, users will be unable to input

commands while the dialog box is displayed.

Save/Load

Units

Resource units (The user cannot freely load and save files as they

require MEM resources).

File Names Must be a maximum of 8 characters, starting with a letter of the

alphabet.

('A'~'Z', '_', '0'~'9')

10-2 Operator symbol (Arithmetic-Compare-Bit)

There are a total of 5 arithmetic operators:

+ Addition (A+B)

- Subtraction (A-B)

* Multiplication (A*B)

/ Division (A/B) *Division by 0 produces error

% Remainder (A%B) *Division by 0 produces error

Addition and multiplication can be used in character string variables.

(e.g.) String for Addition

 A$=""ABC"" : B$=""XYZ"" : PRINT A$+B$

 ABCXYZ

(e.g.) String for Multiplication

 A$=""ABC"" * 4: PRINT A$

 ABCABCABCABC"

There are a total of 6 relational operators:

> Value on left is greater than value on right (A＞B)

< Value on left is less than value on right (A＜B)

>= Value on left is equal or greater than value on right (A＞=B) NOTE =＞ will

not function

<= Value on left is equal or less than value on right (A＜=B) NOTE =＜ will not

function

== The values are equal (A==B)

/= The values are not equal (A!=B)

There are a total of 4 bitwise operators:

AND Logical AND (A AND B)

OR Logical OR (A OR B)

XOR Exclusive OR (A XOR B)

NOT Negation (NOT A)

This operator inverts what is true and false.

! True/False Inversion Symbol

* !TRUE is same as FALSE

* !FALSE is same as TRUE

Order of Operations

1 Sections inside () []

2 Minus, NOT

3 Functions

4 * / % (multiplication, division, remainders)

5 + -

6 == != < <= > >=

7 AND, OR, XOR

10-3 Edit Functions

The text memory can handle approximately 520,000 characters. If the total amount

of characters exceeds this, it will not be possible to save programs, even if they are

within the maximum number of lines.

Editor The text editor in Edit Mode allows you to edit one line at a time.

Pressing ENTER will automatically assign a line number. Text will not be

wrapped.

Line

Limitations

1-9999 (when individual lines are very long, you may be unable to use

the maximum number of lines).

Line

Numbers

Line numbers are treated as lines in a text editor. When new line

numbers are assigned automatically when a linebreak is added,

commands like GOTO and GOSUB will not be able to designate specific

line numbers. For branch instructions, the command @LABEL NAME is

used instead of line numbers.

Characters

Per Line

Up to 100 characters can be entered on a single line. The line will scroll

horizontally to display characters that cannot be displayed on screen.

(If there is insufficient text memory, you may not be able to enter the

maximum 100 characters on a single line).

10-4 Entry Methods

Keyboard Software keyboard

(alphanumeric characters and symbols)

Hardware

Buttons

Can be used. (SELECT is used as the ESC key. The L Button and START

can only be used when a program is running).

Touch

Panel

Can be used, utilizing TCHST, TCHX, TCHY as system variables.

10-5 Display

Display Order

Priority

The user's sprites can be displayed in front of the user's BG

screens.

Front

Upper Screen

Display Levels

Back

Console Screen

User BG Screen (Front)

User Sprite Screen

User BG Screen (Back)

Graphic Screen

Backdrop Screen

Front

Lower Screen

Display Levels

Back

Keyboard or Panel

User BG Screen (Front)

User Sprite Screen

User BG Screen (Back)

Graphic Screen

Backdrop Screen

Graphic

Resolution

256x192 pixels

Characters on

Console Screen

32 chars. x 24 lines (if linebreak is added to last line, it will scroll an

additional 1 line)

Animation

Functions

Simple animations are possible using sprite commands.

Character

Functions

Images consisting of 8 x 8 pixel units. They are SPRITE and BG

resources (CHR style).

BGU User Bank x 4 (BGU0-BGU3)

SPU User Bank x 8 (SPU0-SPU7)

Number of

Colors

Displayed

Simultaneously

Colors can be assigned independently to the upper and lower

screens. The total number of colors is displayed below:

BG 16 colors x 16 types (including transparent)

SP 16 colors x 16 types (including transparent)

GRP 256 colors (0 is transparent)

Palette Colors for SPRITE and BG are divided into units called palettes.

Palettes each have 16 colors, including a transparent one, each of

which has a number assigned to it.

Text Color The 15th color in the designated palette for SPRITE and BG is used

for text color. If this color is changed, the color of the text on

screen will change accordingly.

Background

Color

The color numbered 0 taken from the BG palette numbered 0 is

used as the background color.

10-6 Audio Function

Number of

Simultaneous

Channels

There are a total of 16 channels available for music, sound effects

and synthesized voices (not including PSG).

Sound Effects There are 70 preset sound effects. Volume, panning and frequency

can be modified. 8 sounds can be played at the same time.

Voice

Synthesis

Text entered is read using voice synthesis. The emotion, pitch, and

speaker type can all be modified.

Background

Music Source

128 types of instrument

2 types of drum kit

PSG and sound sources

User-defined simple waveform sources

Background

Music

Waveform

Definition

Adapts to one of 32 defined waveforms.

BGM 30 Preset Songs

128 User-Defined Songs

Maximum of 8 Songs Played Simultaneously

10-7 Error Number Chart

There are a range of different errors and warnings which can occur when a BASIC

program is run. When an error occurs, the error number is given after the system

variable ERR. The line number is given in ERL messages.

1 Syntax error There is problematic grammar in the program.

2 Out of range The value exceeds the valid range.

3 Out of memory There is insufficient memory available.

4 Undefined label The destination for a branch instruction cannot

be located.

5 NEXT without FOR There is a NEXT command which does not belong

to any FOR command.

6 Out of DATA There is insufficient DATA available for a READ

command.

7 Illegal function call There is a problem with the assignment of

elements in a function or command.

8 Duplicate definition The same array or variable has been defined

more than once.

9 Can’t continue A program cannot be continued using a CONT

command.

10 Missing operand There are insufficient parameters.

11 Duplicate label The same label has been defined more than

once.

12 Illegal resource type The resource type designated by a string does

not exist.

13 Illegal character type The designated character type does not exist.

14 String too long The string is too long. Labels should be no longer

than 8 characters, while strings should be no

more than 256 characters in length.

15 Division by zero A number has been divided by zero.

16 Overflow The results of an operation have exceeded the

permitted range.

17 Subscript out of range The subscript for an array variable is out of

range.

18 Type mismatch Variable types do not match.

19 Formula too complex The formula may have too many bracketed

sections, or otherwise be too complex.

20 RETURN without GOSUB A RETURN command is present without an

accompanying GOSUB command.

21 FOR without NEXT A FOR commands is present which does not

correspond to a NEXT command.

22 Illegal MML There is an error in the MML.

11 Text and Display

Information on the keyboard, text, as well as screen display and colors.

11-1 Display Screen Structure

Upper Screen

The upper screen is composed of five separate layers, listed from the back: the

background color screen, the graphic screen, the user's rear BG (background)

screen, the user's foremost BG (background) screen, and the console screen.

While user's programs are running, SPSET or SPCHR commands can be used to

adjust the order of precedence in which sprites are displayed on the graphic, front

and rear BG screens.

Background

Color

The monochrome screen displayed behind every screen.

Graphic

Screen

The screen which you can color or draw lines, curves and more on.

User BG

Screen

(Rear)

The BG screen displayed at the rear (8x8 characters, in 64x64)

User BG

Screen

(Front)

The foremost BG screen (8x8 characters, in 64x64)

Console

Screen

This screen is where the keyboard, control panel, file select etc. are

displayed

Lower Screen

The lower screen is composed of five separate layers, listed from the back: the

background color screen, the graphic screen, the user's rear BG (background)

screen, the user's foremost BG (background) screen, the keyboard, and the panel

components. It normally displays the keyboard screen, but when running programs,

background and graphics can be used via PNLTYPE commands.

Background

Color

The monochrome screen displayed behind every screen.

Graphic

Screen

The screen on which you can color or draw lines, curves and more.

User BG

Screens

(Front -

Rear)

User BG Screens

Keyboard,

Panel

components

This screen is where the keyboard, control panel, file select etc. are

displayed

11-2 Color Palette

In this software, the console, background screens, and sprites and graphics are all

distinct graphical elements:

 - Console characters and BG (background) screens

 - Sprites

 - Graphics

For each element, a separate color palette is available. For the BG screens,

characters and sprites, colors are divided into units of 16 (the color code 0 is

transparent). For graphics, a palette of 256 colors can be used.

Each color available for the BG screens and sprites is divided into 16 with color codes

along the top, and palette codes along the side.

Use the COLSET command to change the palette to your preferred colors. In general,

if you keep darker shades on the left side of the screen, and have brighter colors as

you move towards the right, this will avoid having a confusing mix of colors in your

palette."

◆For Console Characters, Background or Sprites

Palette ↓/ Color code→

(Color code 0 = Transparent)

Colors are divided, with 3 colors assigned for each application (App. 1-4). Colors are

defined as dark, normal and bright.

◆Graphics

Palette ↓ / Color code→

11-3 User BG Characters

Select parameters with LOAD and use this as the background for your screen. You

can restore the initial settings using CHRINIT.

BGU0

BGU1

BGU2

BGU3

11-3 User Sprite Characters

When you wish to display a character on the sprite screen and have it move in four

directions, select each of the four directions (up, down, left, right) by assigning a

sprite character number from the SPU resources.

For example, for SPU1 resources, inputting sprite character numbers 64-67 (right),

68-71 (down), 72-75 (left) and 76-79 (up) will cause the sprite to move in a

clockwise direction on the screen. The SPANIM command allows simple animation.

Character images can be freely adjusted by users.

11-5 Keyboard Display

Touch a string and that string will be displayed on the console screen. Touch SHIFT

or press to change the position of the string.

Alphabet

Alphabet + SHIFT (or)

Symbols

Symbols + SHIFT (or)

Kana

Kana + SHIFT (or)

11-6 Character Code List

The following 256 characters are available.

Unlike previous BASIC programs, this program does not contain control codes from

0-31.

12 Files and Resources

This section gives more information about accessing files within programs, sending

files saved using the Petit Computer to other DSi systems, and receiving files from

other users.

Commands in this section:

LOAD, SAVE, SENDFILE, RECVFILE

12-1 The Relation Between Files and Resources

LOAD and SAVE commands read and write between internal resources and files,

while RECVFILE and SENDFILE commands allow files to be transferred between DSi

systems which have the Petit Computer software.

NINTENDO DSi system with Petit Computer

Resource (Managed Using Resource Name)

Programs Screen

Characters Color

SPU0～SPU7 Graphics

BGU0～BGU3 Memory

 LOAD SAVE

File (Managed Using Separate File Type Name)

PRG PRG CHR CHR CHR

CHR COL RPG SCR COL

COL GRP COL MEM GRP

CHR GRP PRG MEM GRP

MEM PRG SCR SCR

SEND FILE RECV FILE SEND FILE RECV FILE

Other user's Nintendo DSi system with

Petit Computer saved on it – 1

Files

PRG COL MEM

CHR SCR

LOAD SAVE

Other user's Nintendo DSi system with

Petit Computer saved on it – 2

Files

PRG PRG CHR

MEM

LOAD SAVE

12-2 Loading

Input the LOAD command:

LOAD "PRG:SAMPLE01"

Resources Resources

Process is paused.

Data loaded from file to designated

memory resource.

Loading is completed. Continue

operations.

File cannot be found or is corrupted.

Error dialog box is displayed and

process ends.

12-3 Saving

Input the SAVE command:

SAVE "PRG:SAMPLE01"

Process is paused.

Dialog box displayed: 'Save file' Select 'OK' to continue.

If a file of the same name already

exists, a dialog box will be displayed

asking if you want to overwrite this file.

Select 'Yes' to continue.

Dialog box displayed: 'Saving file... Do

not switch off the power'.

After the program has been saved, the

run operation will be returned to.

File cannot be saved or there

is insufficient memory.

Error dialog box is displayed and

process ends.

13-4 The SENDFILE Command

Input the command for sending files:

SENDFILE "CHR:SAMPLE01"

Process is paused.

The 'Send file' dialog box is displayed.

Confirm user you wish you send file.

Select user who is ready to receive file

from the list.

Send the file.

Normal operations resume after file is

sent.

If file cannot be located, an error

message is displayed and the process

ends.

12-5 The RECVFILE Command

Input the command for receiving files:

RECVFILE ""CHR:SAMPLE01"""

Process is paused.

If a file of the same name already exists, a dialog box will be displayed asking if you

want to overwrite this file. Select 'Yes' to continue.

The 'Receive file' dialog box is displayed.

Normal operations resume after file is received.

13 Rules for Commands and Functions

This a list of the rules concerning the commands and functions included in BASIC.

13-1 Petit Computer Commands

In order to give instructions to the computer, a uniform style for writing commands

has been used.

◎Command Format

 Command [parameter] [, parameter] [, parameter]...

13-2 Specific Style for Commands

Petit Computer has used its own original style of writing commands, rather than

simply following the style of commands from previous BASIC programs.

◎Previous BASIC style (prioritizing visibility)

 LINE(x,y)-(x2,y2),color

◎Original Petit Computer style

 GLINE x,y,x2,y2,color

13-3 Petit Computer Functions

In Petit Computer, commands can be used without parentheses ' ('. This means that

functions directly after a command should use parentheses ' (' .

◎Function

 Variable = COLGET$(""Type Name"", Number)

13-4 Commands with Multiple Values

Intermediate position between functions and commands

In the C programming language, functions which return multiple parameters can

use pointers to pass the data. However, this is not an option in BASIC. This means

that each piece of returned data requires its own function. In this software, a READ

function has been implemented that allows multiple pieces of information to be

carried over.

◎Command obtaining multiple values

 TMREAD("<time string>") ,H ,M ,S

When obtaining numbers, it is often necessary to have parameters. This is why Petit

Computer also allows parameters to be passed to a function. Petit Computer was not

designed to accommodate the parameter type or the number of parameters

changing.

H

Variable that retrieves hour

M

Variable that retrieves minute

S

Variable that retrieves seconds

14 Simple Alphabetical Listings

The commands and system functions in SmileBASIC are grouped into their

respective abbreviations, and are listed here in alphabetical order. For basic

command names, typing a single letter into the keyboard will bring up a list of

suggestions. Consult this table to see more details of the number and contents of

parameters.

A

Variable=ABS (number)

ACLS

AND

APPEND "PRG: file name"

Variable=ASC (character)

Variable=ATAN (radian value)

B

BEEP [waveform number [,pitch [,volume [,panpot]]]]

Variable=BGCHK()

BGCLIP start x, start y, end x, end y

BGCLR [Layer]

BGCOPY layer, start x, start y, end x, end y, destination x, destination y

BGFILL

layer, start x, start y, end x, end y, character number, palette number, horizontal

rotation, vertical rotation

BGFILL layer, start point x, start point y, end x, end point y, screen data

BGFILL layer, start x, start point y, end point x, end point y, "screen data string"

Variable=BGMCHK([track number])

BGMCLEAR [song number]

Variable=BGMGETV (track number, variable number)

BGMPLAY song number

BGMPLAY track number, song number, [,track volume]

BGMPLAY "MML string"[,"MML string"...]

BGMPRG waveform number,A,D,S,R,"waveform string"

BGMSET song number,"MML string"[,"MML string"]

BGMSETD song number,@label

BGMSETD song number,variable$

BGMSETV track number,variable number,value

BGMSTOP [track number] [, fade time]

BGMVOL [track number,] volume

BGOFS layer,x,y [,interpolation time]

BGPAGE screen

BGPUT layer, x, y, character number, palette number, horizontal rotation, vertical

rotation

BGPUT layer, x, y, screen data

BGPUT layer, x, y,"screen data string"

BGREAD (layer,x,y), CHR, PAL, H, V

BGREAD (layer, x, y), SC

BGREAD (layer, x, y),SC$

BREPEAT button ID [, start time, interval]

Variable=BTRIG()

Variable=BUTTON([sorted])

C

CANCEL

Variable=CHKCHR(x coordinate,y coordinate)

Variable＄=CHR$(character code)

CHRINIT "character name"

CHRREAD ("character name",character number),C$

CHRSET "character name",character number, "graphic string"

CLEAR

CLS

COLINIT "color bank name", color number

COLOR palette number

COLREAD ("color bank name", color number),R,G,B

COLSET "color bank name",color number,"color data string"

CONT

Variable=COS (radian value)

CSRX

CSRY

D

DATA number, number,...

DATA "string", "string"...

DATA 123,345,56,"SAMPLE"

DATE$

Variable=DEG(radian value)

DELETE "resource name:file name"

DIM pos[4]

<color rgb5=00001f>DIM sample[10,5]

DTREAD (“date string”),YEAR,MON,DAY

E

ELSE

END

ERL

ERR

EXEC "PRG:file name"

Variable=EXP (number)

F

FALSE

FILES [resource name[,resource name...]]

Variable=FLOOR (number)

FOR variable=initial value TO final value [STEP increase]

FREEMEM

FREEVAR

FUNCNO

G

GBOX start x, start y, end x, end y [,color]

GCIRCLE x, y, radius [,color [, initial angle, final angle]]

GCLS [color]

GCOLOR color number

GCOPY [transfer page,] start x, start y, end x, end y, destination x, destination y,

copy mode

GDRAWMD status

GFILL start x, start y, end x, end y [,color]

GLINE start x, start y, end x, end y [,color]

GOSUB ＠label

GOSUB variable$

GOTO @label

GOTO variable $

GPAGE screen [, drawing page][, display screen]

GPAINT x, y [, color [, border color]]

GPRIO number

GPSET x, y [,color]

GPUTCHR x, y, "character name", number, palette number, scale

Variable=GSPOIT(x,y)

H

Variable$=HEX$ (numerical value[, decimal places])

I

Numerical value=ICONCHK()

ICONCLR [icon position]

ICONPAGE

ICONPMAX

ICONPUSE

ICONSET icon position,icon number

When the IF condition is met, the designated command following THEN will be

performed.

IF condition is met THEN @label

When the IF condition is met, the designated command following THEN will be

performed. When these conditions are not met, the command following ELSE will be

performed.

IF condition THEN @label ELSE ＠label

IF (condition) GOTO @label

IF condition is met GOTO @label. If condition is not met, the command after ELSE is

performed.

IF condition GOTO @label ELSE @label

Variable$=INKEY$()

INPUT ["string";] received variable

INPUT ["string";] received variable$

INPUT ["string";] received variable,

received variable$

Variable = INSTR ("string", "search target string")

K

KEY number, “string”

KEYBOARD

L

@label name

Variable$ = LEFT$ ("string", character count)

Variable=LEN(string)

LINPUT ["string";] received variable$

LIST

LIST @label

LIST line number

LOAD "resource name:file name" [,display control]

LOCATE x,y

Variable=LOG(numerical value)

M

MAINCNTL

MAINCNTH

MEM$

Variable$=MID$(string,initial position,character count)

N

NEW

NEXT [variable name]

NOT

O

ON variable GOSUB @label0,@label1,@label2...

ON variable GOTO @label0,@label1,@label2...

OR

P

PACKAGE$

Variable=PI()

PNLSTR x coordinate,y coordinate, "string" [, palette number]

PNLTYPE "panel name"

Variable = POW (numerical value, exponential value)

PROGRAM$

PRINT "string"

PRINT variable

PRINT variable$

PRINT variable;variable$;"string"

PRINT "string",variable,variable$

R

Variable=RAD(angle)

READ obtained variable1[,obtained variable2...]

READ A

READ B$

READ X,Y,Z,G$

REBOOT

RECVFILE "resource name:file name"

REM The following is a comment

'commenttext

RENAME "resource name:file name","new name"

RESTORE @label

RESTORE variable$

RESULT

RETURN

Variable$ = RIGHT$ ("string", character count)

Variable=RND(max value)

RSORT start point, number of elements, array 1 [, array 2...]

RUN

S

SAVE "resource name:file name"

SENDFILE "resource name:file name"

Variable=SGN(variable)

Variable=SIN(radian value)

SORT start point, number of elements, array 1 [, array 2...]

SPANGLE control number,angle [,interpolation time,change direction]

SPANIM control number,number of frames,time [,loop]

Variable=SPCHK(control number)

SPCHR control number, sprite character number [,palette number, horizontal

rotation, vertical rotation, order of precedence]

SPCLR [control number]

SPCOL control number, x, y, w, h, scale adjustment [, group]

SPCOLVEC control number [, displacement x, displacement y]

variable = SPGETV (control number, variable number)

variable = SPHIT (control number [, initially determined control number])

SPHITNO

variable = SPHITRC (control number, x, y, w, h [, displacement x, displacement y])

variable = SPHITSP (control number, control number of other user)

SPHITT

SPHITX

SPHITY

SPHOME control number, x, y

SPOFS control number,x,y [,interpolation time]

SPPAGE screen

SPREAD(control number), X, Y [, A, S, C]

SPSCALE control number,scale [,interpolation time]

SPSET Control number, sprite character number, palette number, horizontal

rotation, vertical rotation, order of precedence [, width, height]

SPSETV control number, variable number, value

Variable = SQR(number)

STEP

STOP

Variable$ = STR$(number)

Variable$ = SUBST$("string", start point, character number, "replacement string")

SWAP variable, variable

SWAP variable$, variable$

SYSBEEP

T

TABSTEP

Variable=TALKCHK()

TCHST

TCHTIME

TCHX

TCHY

THEN

TIME$

TMREAD (“time string”),HOUR,MIN,SEC

TO

TRUE

V

Variable=VAL(string)

VERSION

VISIBLE console,panel,BG0,BG1,SPRITE,256 color graphics

VSYNC frame number

W

WAIT frame number

X

XOR

15 System Variables

15-1 Numeric System Variables

 R W (R=Read, W=Write)

CSRX x Current cursor x-axis (horizontal) position

CSRY x Current cursor y-axis (vertical) position

FREEMEM x Remaining memory available to user

VERSION x System Version (0xAABBCCDD, Version

AA.BB.CC.DD)

ERR x Error number immediately after error occurred

ERL x Number of line where error occurred.

RESULT x Result of running file-related command

TCHX x x coordinate pressed on Touch Screen.

TCHY x y coordinate pressed on Touch Screen.

TCHST x Touch status

(TRUE = Touched)

TCHTIME x Time Touch Screen is touched for

(Given in number of frames)

MAINCNTL x Frames elapsed since start of program (max. 145

minutes)

MAINCNTH x Duration of frame display since program launched

(data over 145 minutes)

TABSTEP x x Amount TAB key will move(0-16)

TRUE x Always 1

FALES x Always 0

CANCEL x Always -1

ICONPUSE x x FALSE=Don't use

TRUE=Use

ICONPAGE x x Page number for user system icon

(0 is always entered in Run Mode)

ICONPMAX x x Maximum number of pages for user system icon

(Does not work in Run Mode.)

FUNCNO x Number of function key pressed (1-5, 0=not pressed)

FREEVAR x Number of variables that can be saved

SYSBEEP x x System sound effect controls (True = ON, False =

OFF)

KEYBOARD x Key Scan Code

SPHITNO x SPRITE Collision Detection Results

(-1=None, 0-99=Detection）

SPHITX x Sprite Detection x Coordinate

SPHITY x Sprite Detection y Coordinate

SPHITT x Sprite Collision Time

15-2 Text String System Variables

 R W (R=Read, W=Write)

TIME$ x Obtains current time as a string (HH:MM:SS)

DATE$ x Obtains current date as a string (YYYY/MM/DD)

MEM$ X x Number of strings that can be saved in file

PRGNAME$ x The LOAD, EXEC, RECVFILE parameters run most

recently will be stored.

PACKAGE$ x The package data for the last file read by the system

is stored.

15-3 KEY Scan Code

The system variable KEYBOARD is a special variable that allows the gathering of

keyboard data that cannot be gained from INKEY$. The values gained are not

numbers corresponding to characters, but are values that correspond to keys on the

keyboard. If nothing is inputted, the KEYBOARD variable will be 0.

16 Run Mode-Specific Commands

There are 5 commands that can only be used in Run Mode. These are related to

running and continuing programs and cannot be written into the programs

themselves:

NEW, LIST, RUN, CONT, FILES, REBOOT

16-1 NEW

This deletes the program.

Programs you are currently editing will be lost. If you wish to use them again, store

them using a SAVE command before exiting.

Format NEW

Parameters None

Returns None

Error

16-2 LIST

Switches to Edit Mode and begins edit.

Format LIST

LIST @label

LIST line number

Parameters Line number Designate line where source is

displayed.

 @label Designate line where source is

displayed.

Returns None

Error When line number or label does not exist.

16-3 RUN

This runs the program.

Format RUN

Parameters None

Returns None

Error

17 CONT

Continues a program stopped with a STOP command.

Format CONT

Parameters None

Returns None

Error When program has been run and cannot be continued.

16-5 FILES

Format FILES [file type name [, file type name...]]

Parameters File Type Name

Strings are allocated according to the resource type of the target file.

PRG Program (can be omitted)

MEM Memory

COL Color

GRP Graphics

SCR User screen

CHR User character

Returns None

Error

16-6 REBOOT

Exit BASIC and return to the Home Menu.

Programs you are currently editing will be lost, as well as other data, including

characters you are creating and color settings. If you wish to use any elements from

your current program again, please use the SAVE command.

Format REBOOT

Parameters None

Returns None

Error

17 Declarations & Assignment Commands

The following commands allow you to initialize memory, perform array declarations

and more:

CLEAR, =, DIM, REM, @, KEY

17-1 CLEAR

This resets variable names and BASIC internal memory.

Format CLEAR

Parameters None

Returns None

Error

17-2 =(LET)

Assign (an abbreviation of the LET command)

Format ABC=123

TEXT$=”ABCDE”

Parameters None

Returns None

Error

17-3 DIM

Array declarations

Element count for up to 2 dimensions.

Element count can be defined up to a total of 262144."

Format DIM pos(4),size(4)

DIM sample(10,5)

DIM MSG$(15)

Parameters None

Returns None

Error

17-4 `(REM)

For annotations(comments).

The text following this command up to the next linebreak will be ignored.

Format REM The following is a comment ` comment text

Parameters None

Returns None

Error

17-5 @(Label definition)

Declaration of the name, giving the line number.

This always needs to be added at the start of a row. The character string following @

will become the name under which it is saved. It can be used to give destinations

with commands such as GOTO and GOSUB.

Format @label name

Parameters Label name Unlike strings, it is not

necessary to enclose with “”

Returns None

Error When characters or symbols that are not alphanumeric characters or

'_' are in a label name. When the label name is not defined.

17-6 KEY

Assigning Strings to Function Keys

When used in a user-created program, the string data assigned to the function key

will be entered in the program when that key is pressed.

Format KEY number, "string"

Parameters Number Function Key Number (1-5)

 String Only 4 characters from the

assigned string will be

displayed, but strings of up to

256 characters can be saved.

When the full string cannot be

displayed, the last character will

be displayed as '.'

Returns None

Error When a number is designated that does not exist.

18 Variable Controls & WAIT Command

The following basic commands can be used to control variables:

SWAP, SORT, RSORT, VSYNC, WAIT

18-1 SWAP

This swaps the contents of 2 variables.

Format SWAP variable 1, variable 2

SWAP variable $1, variable $2

Parameters Variable 1 First variable

 Variable 2 Second variable

Returns None

Error

18-2 SORT

This arranges values in ascending order (1→99) in a one-dimensional array.

Format SORT start position, number of elements, array 1 [, array 2...]

Parameters Start Position Start Point to Arrange Values (0

～

 Number of Elements Total to be Arranged

 Array 1 Name of Target Array *() is not

required.

 [array 2]... Array results will be in order,

starting with array 1 (when

array names are entered, all

arrays will be arranged

according to the array 1

results).

Returns None

Error This routine with arrange the contents of array IX in ascending order

according to the contents of array V:

CLEAR

DIM IX(10),V(10)

FOR I=0 TO 9

 IX(I)=I : V(I)=RND(100)

 PRINT I;"=";IX(I);":";V(I)

NEXT

SORT 0,10, V, IX

PRINT

FOR I=0 TO 9

 PRINT I;"=";IX(I);":";V(I)

NEXT

18-3 RSORT

This arranges values in descending order (99→1) in a one-dimensional array.

Format RSORT start position, number of elements, array 1 [, array 2 ...]

Parameters Refer to SORT

Returns None

Error

18-4 VSYNC

Same length as screen renewal time (waiting for graphics to be renewed).

Format VSYNC Frame number

Parameters Frame number Indicates number of frames

since the VSYNC command

immediately beforehand. (0 =

ignore)

Returns None

Error

18-5 WAIT

A simple wait command.

Format WAIT frame number

Parameters Frame number The program will wait for the

designated number of frames.

(Setting the frame count to 60

will result in the program

waiting for 1 second).

Returns None

Error

19 Branch Instructions

The following commands allow you to call routines and set branch instruction

conditions:

ON～GOTO, ON～GOSUB, GOTO, GOSUB, RETURN, STOP, END

19-1 ON～ GOTO

Causes program to branch depending on numeric values.

Format Line number when ON variable GOTO variable =0 (or @label), numeric

value 1, numeric value 2...

Parameters Variables Branch Number (0～

Returns None

Error

19-2 ON～ GOSUB

Calls a sub-routine based on number

Format Line number (or @label) when ON variable GOSUB variable =0,

numeric value 1, numeric value 2...

Parameters Variables Branch Number (0～

Returns None

Error

19-3 GOTO

Forced branch.

Instead of an ＠label, you can also use a text string variable substituted for the label

name.

Format GOTO @label

GOTO variable＄

Parameters @label Branch Destination Name

Returns None

Error

19-4 GOSUB

Call sub-routine

Instead of an ＠label, you can also use a text string variable substituted for the label

name.

Format GOSUB @label

GOSUB variable＄

Parameters @label Branch Destination Name

Returns None

Error

19-5 RETURN

Returns from a sub-routine.

Always use this command in conjunction with GOSUB.

Format RETURN

Parameters None

Returns None

Error

19-6 STOP

Forces the currently running program to stop and returns to the console.

Format STOP

Parameters None

Returns None

Error

19-7 END

Ends the program.

Format END

Parameters None

Returns None

Error

20 Repeat/Comparison Commands

The following commands allow you to repeat routines the designated number of

times or judge conditions:

FOR~TO~STEP, NEXT,

IF~THEN, IF~GOTO

20-1 FOR～ TO～ STEP

Repeat the designated number of times

If STEP has been omitted, it will be treated as STEP1. If increase is added and the

final value is less than the initial value, the FOR command will be skipped and the

NEXT and subsequent commands will be run.

Format FOR variable = initial value TO final value [STEP increase]

Parameters Variables For Frequency Management

 Initial Value Number at Start

 Final Value Number at End

 Increase Value to Add Once

Returns None

Error

20-2 NEXT

End of Loop

Always use as in conjunction with a FOR command

Format NEXT [variable name]

Parameters Variable name Repeated variable

Returns None

Error

20-3 IF～ THEN～ ELSE

Conditional Judgment

The IF command does not work across multiple lines.

Format IF condition is met THEN command

IF condition is met THEN @label

IF condition met THEN command, IF condition not met ELSE command

IF condition is met THEN @label or ELSE @label

Parameters Conditional Comparison between content

 If condition met Command/Branch destination

 If condition not met Command/Branch destination

Returns None

Error

20-4 IF～ GOTO～ ELSE

Conditional Judgment

The IF command does not work across multiple lines.

Format IF condition met GOTO @label

IF condition met GOTO @label or ELSE other command

IF condition met GOTO @label or ELSE @label

Parameters Conditional Comparison between content

 If condition met Command/Branch destination

 If condition not met Command/Branch destination

Returns None

Error

21 READ

Read Commands

The following commands relate to reading data and related tasks:

READ, DATA, RESTORE,

TMREAD(), DTREAD()

21-1 READ

Reads DATA.

Format READ returned variable1 [, returned variable2...]

READ A,B,C

READ X$,Y$

READ X,Y,Z,G$

Parameters Obtained variable... Variable storing information

taken from DATA.(Multiple

designation possible.)

Returns None

Error When amount of data to be read is insufficient.

21-2 DATA

Definition of data to be read with READ command

can include a mix of alphanumeric characters.

Format DATA number, number,...

DATA "string", "string",...

DATA 123,"SAMPLE",...

Parameters Data Sequences of strings and

numbers to be divided with ','

Returns None

Error

21-3 RESTORE

Changes position of DATA to be READ.

Instead of an ＠label, you can also use a text string variable substituted for the label

name.

Format RESTORE @label

RESTORE variable＄</color>

Parameters @label Acquisition Position

Returns None

Error

22-4 TMREAD()

Convert time string into number.

Format TMREAD(“time string”), HOUR, MIN, SEC

Parameters Time string HH:MM:SS Format of time

string

 HOUR Variable retrieving hour

 MIN Variable retrieving minute

 SEC Variable retrieving second

Returns None

Error

22-5 DTREAD()

Convert the date string into a number.

Format DTREAD(“date string”), YEAR, MON, DAY

Parameters DATA string Date displayed in format:

YYYY/MM/DD

 YEAR Variable retrieving Year

 MON Variable retrieving month

 DAY Variable retrieving day

Returns None

Error

22 Basic Console Commands

The following commands allow you to display or adjust characters on the console

screen:

CLS、COLOR、LOCATE、PRINT、CHKCHR()、ACLS、VISIBLE

22-1 CLS

Erases the contents of the console screen.

Format CLS

Parameters None

Returns None

Error

22-2 COLOR

Caractor coler is specified on console display.

Format TMREAD(“time string”), HOUR, MIN, SEC

Parameters Character Color 0～15 (Uses the 15th color of

the 16 color palette assigned to

BG screens)

 Background Color 0～15 (0=transparent)

Returns None

Error

22-3 LOCATE

Designates the position of the character display on the console.

Format LOCATE x coordinate, y coordinate

Parameters x coordinate Horizontal coordinates (0-31)

*Values outside valid range may

be used.

 y coordinate Vertical coordinates (0-23)

*Values outside valid range may

be used.

Returns None

Error

22-4 PRINT

Displays characters on the console.

Format PRINT "string"

PRINT variable

PRINT variable$

PRINT variable;variable$;”string”

PRINT "string",variable,variable＄

Parameters ; Used when displaying multiple

elements one after the other.

 , When displaying multiple

elements one after the other,

adjustments are made for TAB

position

Returns None

Error

22-5 CHKCHR()

Search for character numbers on the console.

Format Variable = CHKCHR (x coordinate, y coordinate)

Parameters x coordinate Used when displaying multiple

elements one after the other.

 y coodinate When displaying multiple

elements one after the other,

adjustments are made for TAB

position

Returns Number 0-255=character code

(-1=outside range)

Error

22-6 ACLS

Reset Graphic Display Environment

Format ACLS

Parameters None

Returns None

Error

The program below will return settings such as console, SPRITE, BG, graphic display

status and color settings to their default:

VISIBLE 1,1,1,1,1,1: ICONCLR

COLOR 0: CLS: GDRAWMD FALSE

FOR P=1 TO 0 STEP -1

 GPAGE P,P,P: GCOLOR 0: GCLS: GPRIO 3

 BGPAGE P: BGOFS 0,0,0: BGOFS 1,0,0

 BGCLR: BGCLIP 0,0,31,23

 SPPAGE P: SPCLR

NEXT

FOR I=0 TO 255

 COLINIT "BG", I: COLINIT "SP", I

 COLINIT "GRP",I

NEXT

22-7 VISIBLE

Control of screen display elements (using 0 will cause a particular element not to be

displayed, while using 1 will display it).

Format VISIBLE console, panel, BG0, BG1, SPRITE, graphic

Parameters Console 0=No display 1=Display

 Panel 0=No display 1=Display

 BG0 0=No display 1=Display

 BG1 0=No display 1=Display

 Sprite 0=No display 1=Display

 Graphic 0=No display 1=Display

Returns None

Error

23 Console Entry Commands

The following functions and commands will return data on inputted button and

strings:

INKEY$(), INPUT, LINPUT, BUTTON(), BTRIG(), BREPEAT

23-1 INKEY$()

Obtains a single character inputted on the keyboard.

This command will output the data from the TAB key converted into a space. For

system reasons, Backspace will not be returned. To use these keys, utilize a

keyboard system variable.

Format Variable$=INKEY$0

Parameters None

Returns Character variable A single keyboard character will

be returned.(When there is

nothing inputted, it will return

"".)

Error

23-2 INPUT

Obtain numbers or strings.

Format INPUT ["string";] received variable

INPUT ["string";] received variable$

INPUT ["string";] received variable, received variable2$

Parameters String Explanatory text for entry

 Received variable Text string variable or value for

obtaining data entered on the

keyboard. Use commas to split

up commands, so you can enter

multiple commands.

Returns None

Error

23-3 LINPUT

Retrieves string, including characters like ',' which cannot be entered via INPUT.

Format LINPUT ["string";] received variable$

Parameters String Explanatory text for entry

 Received variable Variable for receiving a one line

string entered via keyboard.

Returns None

Error

23-4 BUTTON()

This returns data from each button pressed.

When buttons are pressed simultaneously, the data is retrieved in bit from. For

instance, if up and right are pressed at the same time, the value 9 is returned. When

using values beside those for buttons being pressed, use VSYNC1 to synchronize the

action, completing it within 1/60th of a second during the man loop. Completing it

within 1/60th of a second during the main loop.

Format Variable=BUTTON([type])

Parameters Type (if unspecified, will be set to 0)

0 Pressed

1 Instant pressed (including rapid-fire button presses)

2 Instant pressed

3 Instant released

Returns Number that corresponds to button

1 Up on +Control Pad

2 Down on +Control Pad

4 Left on +Control Pad

8 Right on +Control Pad

16 A Button

32 B Button

64 X Button

128 Y Button

256 L Button

512 R Button

1024 START

Error

23-5 BTRIG()

This returns data from the instant a button is pressed.

To use a precise value, use VSYNC1 to synchronize the a action, completing it within

1/60th of a second during the main loop.

Format Variable=BTRIG()

Parameters None

Returns Variable Variable corresponding to

button *BUTTON() Reference

Error

23-6 BREPEAT

Data Settings for Repeated Button Presses

The multiple button press function is usually set to OFF. Use this command to

activate it. When you designate a button using the Button ID, that button's repeated

press function will be switched OFF as standard. The unit of time 1 corresponds to

1/60th of a second.

Format BREPEAT Button ID [, start time, interval]

Parameters Button ID (control number)

0 Up on +Control Pad

1 Down on +Control Pad

2 Left on +Control Pad

3 Right on +Control Pad

4 A Button

5 B Button

6 X Button

7 Y Button

8 L Button

9 R Button

10 START

 Start Time 0 -

 Interval 1 – (0=Pause)

Returns None

Error

24 Panel & Icon Commands

The following commands let you perform tasks like changing panel type, and

checking user system icon status or adjusting their settings:

PNLTYPE, PNLSTR, ICONSET, ICONCLR, ICONCHK()

24-1 PNLTYPE

Changes the panel type.

Format PNLTYPE "panel name"

Parameters Panel name

Strings that select type to be displayed on Lower Screen:

OFF No panel is displayed

PNL When there is no keyboard

KYA English keyboard

KYM Symbol keyboard

KYK Kana keyboard

Returns None

Error

24-2 PNLSTR

String Display on Lower Screen.

Unlike on the console on the upper screen, line breaks will not be added

automatically, even when displaying the last line.

Format PNLSTR x coordinate, y coordinate, "string", palette number

Parameters x coordinate Horizontal coordinates (0-31)

*Values outside valid range may

be used.

 y coordinate Vertical coordinates (0-23)

*Values outside valid range may

be used.

 Palette number 0 – 15

Returns None

Error

24-3 ICONSET

Settings for user system icon characters (or to initiate display).

Format ICONSET icon position, icon number

Parameters Icon position User system icon number (0 –

3)

 Icon number Character control numbers for

icons)0- 63)

Returns None

Error

24-4 ICONCLR

Cancels display of user system icons.

Format ICONCLR icon position

Parameters Icon position 0 – 3 (if unspecified, this will

apply to all icons)

Returns None

Error

24-5 ICONCHK()

Check current status of user system icons.

Format Number = ICONCHK()

Parameters None

Returns Number 0 – 3 (icon location), -1 = not

pressed

Error

25 File & Communication Commands

The following commands are used for operations relating to files, such as loading,

saving and deleting. Dialog boxes will appear after using these commands, allowing

you to confirm your decision:

LOAD、SAVE、DELETE、RENAME、RECVFILE、SENDFILE

25-1 LOAD

Loads file.

Format LOAD "resource name:file name" [, display control]

Parameters Resource Name

Strings assigned to the resources to be read.

PRG Program (Can be omitted)

MEM Memory

COL0

COL1

COL2

BG Colors

SPRITE Collors

Graphic Colors

GRP0

:

GRP3

Graphics (For 4 Pages)

SCU0

SCU1

Foreground layer

Background layer

BGU0

:

BGU3

User’s GB Characters(Bank x 4)

SPU0

:

SPU3

User Sprite Characters (Bank x 8)

 Display control Enter FALSE and the dialog box

will not be displayed during

loading.

Returns None

Error Result FALES

TRUE

CANCEL

25-2 SAVE

This saves a file. (A dialog box confirming the decision will appear.)

You cannot use filenames that match the names of files included as samples with

this software.

Format SAVE "Resource name:file name"

Parameters Resource name *Refer to LOAD

Returns None

Error RESULT FALES

TRUE

CANCEL

25-3 DELETE

Erases file.

You cannot delete files included as samples with this software.

Format DELETE "Resource name:file name"

Parameters Name of File Type *Refer to FILES

Returns None

Error RESULT FALES

TRUE

CANCEL

25-4 RENAME

Changes file names.

Format RENAME "resource name: file name", "new name"

Parameters Name of File Type *Refer to FILES

Returns None

Error RESULT FALES

TRUE

CANCEL

25-5 RECVFILE

Receive a Petit Computer file another user has saved on their DSi system (displays

confirmation message).

Format RECVFILE "resource name: file name”

Parameters Name of File Type *Refer to FILES

Returns None

Error RESULT FALES

TRUE

CANCEL

25-6 SENDFILE

Send files to another user who has a DSi with Petit Computer saved on it.

Format SENDFILE "resource file: file name"

Parameters File type name *Refer to FILES

Returns None

Error RESULT FALES

TRUE

CANCEL

26 File Commands (Expert)

These commands are geared towards experts who have a high level of

understanding of files and resources. If you do not understand these commands

after reading the explanation, please avoid using them.

APPEND, EXEC, SAVE (as package)

26-1 APPEND

Combining Programs (In Run Mode)

You can add another program to the end of a program you are editing. If you use the

APPEND command without having fully understood how the command functions,

you may append a program to the one you are editing and prevent your current

program from working properly. Please ensure that you have fully understood the

command before making use of it.

Format APPEND "File Name"

Parameters File name File names of programs you

wish to combine.

Returns None

Error RESULT FALES=Failure

26-2 EXEC

Loads and runs other programs from within the current program.

Format EXEC "file name"

Parameters File name Name of program file to run

Returns None

Error RESULT FALES=Failure

26-3 Save (As Package)

This allows you to save programs and resources together.

Files outputted in package form can be extremely large. Ensure that you have

enough free space available when saving programs as package-type files. Please

note that when programs saved as package-type files are opened with a LOAD

command, all resources included in the package will also be loaded.

Format SAVE "Resource Name:File Name", "Package Parameter String"

Parameters Package Parameter String Data for Designating Resources

to be Saved at Same Time

Returns None

Error RESULT FALES

TRUE

CANCEL

26-4 Package Parameter String

Bitwise data allowing you to select resource types will be displayed in hexadecimal

string form.

Change the bitwise data corresponding to resources saved at the same time to 1 and

you can save data including all resources in a single file.

(e.g.) You can save resources such as these:

 - Upper screen user's sprite 0, 6, 7 and color

 - Both upper screen user's BG0 and BG Screen and color

The resources structures above can be expressed in binary or hexadecimal form.

 COL0U BGU0U

 COL1U SPU7

 SCU0U SPU6

SCU1U SPU0

0 0 1 1 _ 0 1 1 0 _ 0 0 0 1 _ 1 1 0 0 _ 0 0 0 1

3 _ 6 _ 1 _ C _ 1

Save package parameters as a hexadecimal string.

SAVE "TEST", "361C1"

Please note that when using HEX$, a maximum value of 20 bits can be used.

b00 SPU0 Upper Screen User Sprite Character 0

b01 SPU1 Upper Screen User Sprite Character 1

b02 SPU2 Upper Screen User Sprite Character 2

b03 SPU3 Upper Screen User Sprite Character 3

b04 SPU4 Upper Screen User Sprite Character 4

b05 SPU5 Upper Screen User Sprite Character 5

b06 SPU6 Upper Screen User Sprite Character 6

b07 SPU7 Upper Screen User Sprite Character 7

b08 BGU0U Upper Screen User BG Character 0

b09 BGU1U Upper Screen User BG Character 1

b10 BGU2U Upper Screen User BG Character 2

b11 BGU3U Upper Screen User BG Character 3

b12 BGUFU Upper Screen Font

b13 COL0U Upper Screen BG Color

b14 COL1U Upper Screen SPRITE Color

b15 COL2U Upper Screen Graphic Color

b16 SCU0U Upper Screen BG Foreground Layer

b17 SCU1U Upper Screen BG Background Layer

b18 GRP0 Graphic Page 0

b19 GRP0 Graphic Page 1

b20 GRP0 Graphic Page 2

b21 GRP0 Graphic Page 3

b22 MEM Memory String

b23 System Reservation

b24 System Reservation

b25 System Reservation

b26 System Reservation

b27 BGU0L Lower Screen User BG Character 0

b28 BGU1L Lower Screen User BG Character 1

b29 BGU1L Lower Screen User BG Character 2

b30 BGU1L Lower Screen User BG Character 3

b31 BGUFL Lower Screen Font

b32 COL0L Lower Screen BG Color

b33 COL1L Lower Screen SPRITE Color

b34 COL2L Lower Screen Graphic Color

b35 SCU0L Lower Screen BG Foreground Layer

b36 SCU1L Lower Screen BG Background Layer

b37 System Reservation

b38 System Reservation

b39 System Reservation

b40 System Reservation

b41 System Reservation

b42 System Reservation

b43 System Reservation

b44 System Reservation

b45 Unused

b46 Unused

b47 Unused

27 Basic Mathematical Functions

The following mathematical functions allow you to perform tasks including obtaining

integers, absolute values and codes and generating random numbers:

FLOOR(), RND(), ABS(), SGN()

27-1 FLOOR()

Obtain the integer or whole number.

You can also use the AND command to obtain an integer in a 1 byte range (e.g.) A=A

AND &HFF

Format Variable = FLOOR(number)

Parameters Number Number

Returns Number Requested result

Error

27-2 RND()

Gives a random number up to the designated value.

Format Variable = RND(maximum number)

Parameters Maximum Number Maximum number generated

Returns Number Random number from 0 –

maximum number (not

including the maximum value)

Error

27-3 ABS()

Obtains an absolute value.

Format Variable = ABS(number)

Parameters Number Number from which you want to

obtain an absolute value

Returns Number Absolute value

Error

27-4 SGN()

Obtains a code.

Format Variable = SGN(variable)

Parameters Number Number to check code

Returns Number 0 or +1,-1

Error

28 Exponential Figures & Logarithms

"The following commands allow you to perform logarithms and generate

exponential figures (numbers to the power of other numbers):

SQR()、EXP()、LOG()、POW()

28-1 SQR()

Obtains the square root of a number.

Format Variable = SQR(number)

Parameters Number Original numerical value

Returns Number Requested result

Error When value is negative number

28-2 EXP()

Looks for the exponent value.

Format Variable = EXP(number)

Parameters Number Original numerical value

Returns Number Requested result

Error

28-3 LOG()

Calculated natural logarithm.

Format Variable = LOG(variable)

Parameters Number Original numerical value

Returns Number Calculated result

Error

28-4 POW()

Use this command to return an exponential value - multiplying a number by the

power of another number.

Format Variable=POW(numerical value, exponential value)

Parameters Number Original numerical value

Returns Exponential value Value when multiplied to power

of exponential value

Error When the value is a negative number and the exponential value is not

a whole number (integer).

29 Trigonometric Functions

The following mathematical functions allows you to perform calculations including

the value of sine and cosine:

PI(), RAD(), DEG(), SIN(), COS(), TAN(), ATAN()

29-1 PI()

Obtains value of PI.

Format Variable=PI()

Parameters None

Returns Number Value of PI (circumference ratio)

Error

29-2 RAD()

Obtain a radian figure from angle data.

Format Variable=RAD(angle)

Parameters Angle 0 – 360

Returns Number Radian figure from angle

Error

29-3 DEG()

Obtains angle data from radian value.

Format Variable=DEG(radian)

Parameters Radian 0 – 2π

Returns Number Angle from radian value

Error

29-4 SIN()

Returns sine value.

Format Variable=SIN(radian)

Parameters Radian Radian value of angle

Returns Number Requested result

Error

29-5 COS()

Returns cosine value.

Format Variable=COS(radian)

Parameters Radian Radian value of angle

Returns Number Requested result

Error

29-6 TAN()

Returns tangent value.

Format Variable=TAN(radian)

Parameters Radian Radian value of angle

Returns Number Requested result

Error

29-7 ATAN()

Obtains the arc tangent value.

Can also be used as a function for determining direction from 2 parameters (Y, X)

and displacement. Desired direction=ATAN(destination y-y, destination x-x)

Format Variable=ATAN(radian)

Parameters Radian Radian value of angle

Returns Number Requested result

Error

31 Basic Character Functions

The following character-related functions allow you to obtain data from strings and

find the codes for designated characters:

ASC(), CHR$(), VAL(), STR$(), HEX$()

30-1 ASC()

Character code of designated character.

Format Variable=ASC(character)

Parameters Character Single Character

Returns Number Character code of designated

character

Error

30-3 VAL()

Obtains a number from a string.

Format Variable=VAL(string)

Parameters String String with number

Returns Number Number extracted from string

Error

30-4 STR$()

Obtain a string from a number.

Format Variable=STR$(number)

Parameters Number Number you want to convert to

string

Returns Character String generated from number

Error

30-5 HEX$()

Gives a hexadecimal string from a number.

Format Variable$ = HEX$ (numerical value [, decimal places])

 Number Number you want to convert to

hexadecimal string

 Decimal Places 1~5 (When the value does not

correspond to the given number

of decimal places, the remaining

figures will be replaced by 0.)

Returns Character Hexadecimal string generated

from number.

Error

31 Search & Replace Character Functions

The following functions and commands will return data on character numbers, and

obtain sections of strings:

LEN, MID$, RIGHT$, LEFT$, INSTR(), SUBST$

31-1 LEN()

Obtains the number of characters within a string.

Format Variable=LEN(string)

Parameters String String you want to determine

the length of

Returns Number Number of characters (every

character is counted as 1)

Error

31-2 MID$()

Extracts a string of a designated length starting from the initial position within the

target string.

Format Variable$ = MID$(string, initial position, number of characters)

Parameters String Original string

 Initial position Initial position of characters

 Number of characters Number of characters to be

retrieved

Returns Character Extracted string

Error

31-3 RIGHT$()

The designated number of characters will be obtained, counting from the right side

of the character string.

Format Variable$ = RIGHT$ (character string, number of characters)

Parameters Number of characters Original string

 Number of characters Number of characters to be

retrieved

Returns Character Extracted string

Error

31-4 LEFT$()

The designated number of characters will be obtained, counting from the left side of

the character string.

Format Variable$ = LEFT$ (character string, number of characters)

Parameters String Original string

 Number of characters Number of characters to be

retrieved

Returns Character Extracted string

Error

31-5 INSTR

This will search for a particular character string within the designated search range.

Format Variable = INSTR (character string, character strings to search)

Parameters Number of characters Original string

 Character strings to search within Character string to search for

Returns Number Position within character string

(0～, -1=None)

Error

31-6 SUBST$

Use this command to replace a character string.

Format Variable $ = SUBST$ (character string, start position, number of

characters, character string to substitute with)

Parameters String Original string

 Initial position Original position of the string

you wish to replace (0～number

of characters -1)

 Number of characters Number of characters to replace

 Modified character string Modified character string

Returns Character Character string after

replacement.

Error

32 Basic Graphic Commands

The following commands perform tasks such as designating the graphic page to be

used and erasing graphics:

GPAGE, GCOLOR, GCLS, GSPOIT()

32-1 GPAGE

Designates the graphic screen to be used.

Format GPAGE screen

Parameters Screen 0=Upper Screen

1=Lower Screen

Returns None

Error

32-2 GCOLOR

Assigns graphic color on graphic screen.

Format GCOLOR color number

Parameters Color number 0 - 255

Returns None

Error

32-3 GCLS

Erases images on designated graphic screen.

Format GCLS [color]

Parameters Color 0 - 255

Returns None

Error

32-4 GSPOIT()

Checks color of designated location.

Format Variable=GSPOIT (x coordinate, y coordinate)

Parameters x coordinate 0 – 255 (Values outside valid

range may be used)

 y coordinate 0 – 191 (Values outside valid

range may be used)

 Color 0 – 255 (-1 if outside range)

Returns None

Error

33 Graphic Screen Commands

The following commands allow you to draw lines and circles and color sections of the

screen:

GPSET, GPAINT, GLINE, GBOX, GFILL, GCIRCLE, GPUTCHR

33-1 GPSET

Adds a dot.

Format GPSET x coordinate, y coordinate [,color]

Parameters x coordinate 0 – 255 (Values outside valid

range may be used)

 y coordinate 0 – 191 (Values outside valid

range may be used)

 Color 0 – 255 (-1 if outside range)

Returns None

Error

33-2 GPAINT

Fills in color from designated point.

Where the border color has been designated, the area this border surrounds will be

filled with a single color. To save time, any color adjacent to the designated location

which has the same color will be filled in. This does not work in XOR display mode.

Format GPAINT x coordinate, y coordinate [,color]

Parameters x coordinate 0 – 255 (Values outside valid

range may be used)

 y coordinate 0 – 191 (Values outside valid

range may be used)

 Color 0 – 255 (-1 if outside range)

 Border Color 0 – 255

Returns None

Error

33-3 GLINE

Draws a line.

Format GLINE x start point, y start point, x end point, y end point [,color]

Parameters x start point 0 – 255 (Values outside valid

range may be used)

 y start point 0 – 191 (Values outside valid

range may be used)

 x end point 0 – 255 (Values outside valid

range may be used)

 y end point 0 – 191 (Values outside valid

range may be used)

 Color 0 – 255 (if omitted, color will be

GCOLOR)

Returns None

Error

33-4 GBOX

Draws a box.

Format GBOX x start point, y start point, x end point, y end point [,color]

Parameters x start point 0 – 255 (Values outside valid

range may be used)

 y start point 0 – 191 (Values outside valid

range may be used)

 x end point 0 – 255 (Values outside valid

range may be used)

 y end point 0 – 191 (Values outside valid

range may be used)

 Color 0 – 255 (if omitted, color will be

GCOLOR)

Returns None

Error

33-5 GFILE

Fills in color of a rectangle.

Format GFILE x start point, y start point, x end point, y end point [,color]

Parameters x start point 0 – 255 (Values outside valid

range may be used)

 y start point 0 – 191 (Values outside valid

range may be used)

 x end point 0 – 255 (Values outside valid

range may be used)

 y end point 0 – 191 (Values outside valid

range may be used)

 Color 0 – 255 (if omitted, color will be

GCOLOR)

Returns None

Error

33-6 GCIRCLE

Drawas a circle.

Format GCIRCLE x coordinate, y coordinate, radius [,color] [, initial angle,

final angle]

Parameters x coordinate 0 – 255 (Values outside valid

range may be used)

 y coordinate 0 – 191 (Values outside valid

range may be used)

 Radius 0 – 255 (Values outside valid

range may be used)

 Color 0 – 255 (if omitted, color will be

GCOLOR)

 Initial angle 0 – 360 (Values outside valid

range may be used)

 Final angle 0 – 360 (Values outside valid

range may be used)

Returns None

Error

34 Graphic Commands (Expert)

The following commands allow you to perform tasks such as designating special

pages, copying screens, and displaying characters on the graphic screen:

GPAGE, GDRAWMD, GPRIO, GCOPY, GPUTCHR

34-1 GPAGE(Expert)

This allows you to select a graphic screen to control, and then demarcate internal

graphic areas within it, allocating specific areas for drawing and display.

Initialized situation and Run ACLS Command function, Assignment GPAGE 0,0,0 and

GPAGE 1,1,1.

Format GPAGE screen [,drawing page , display page]

Parameters Screen 0=Upper Screen

1=Lower Screen

 Drawing Page 0 – 3

 Display Page 0 – 3

Returns None

Error

On the upper and lower screen, you can allocate the pages to be displayed from a

total of 4. First, select either the upper or lower screen and then allocate the pages

you wish to have displayed on it. You can use drawing commands such as GPAINT to

draw on a page that has not been selected for on-screen display. When you have

finished the graphics, it is possible to then switch to this screen when you wish to

have it displayed.

34-2 GPRIO

Modifying Display Order Priority on the Graphic Screen

As standard, the display always appears behind the sprites on screen. The values for

the display order priority are designed for sprite display.

Format GPRIO Number

Parameters Number 0 – 3

Returns None

Error

34-3 GDRAWMD

This is used to designate drawing color in XOR Display Mode.

When using the XOR display mode, you can erase the contents of an image by

drawing an image twice in the same place.

Format GDRAWMD Status

Parameters Status FALSE=Normal color

TRUE=XOR

Returns None

Error

34-4 GCOPY

This command copies the graphic screen.

Format GDRAWMD StatusGCOPY [transfer source page,] start x, start y, end

x, end y, destination x, destination y, Copy Mode

Parameters x coordinate 0 – 255 (Values outside valid

range may be used)

 y coordinate 0 – 191 (Values outside valid

range may be used)

 Character name *Refer to CHRINIT

 Character number Character color (1 – 15)

 Scale Magnification (1,2,4,8)

Returns None

Error

34-5 GPUTCHR

This displays the assigned character graphic data on the graphic screen.

This command will copy the data for the designated palette number to the graphic

palette. The assigned location will be colored with the 16th shade of the 16th color

from the designated palette number.

Format GPUTCHR x coordinate, y coordinate, "character name", number,

palette number, scale

Parameters Transfer Source Page 0 – 3

 Start point x 0 – 255 (Values outside valid

range may be used)

 Start point y 0 – 191 (Values outside valid

range may be used)

 End point x 0 – 255 (Values outside valid

range may be used)

 END point y 0 – 191 (Values outside valid

range may be used)

 Transfer destination x 0 – 255

 Transfer destination y 0 – 191

 Copy mode Copy of Color 0

FALES = Do not perform

True = Perform

Returns None

Error

35 Color & Character Commands

The following commands allow you to control the elements displayed on the screen,

designate colors or retrieve data, define characters or reset the screen:

COLINIT, COLSET, COLREAD(), CHRINIT, CHRSET, CHRREAD()

35-1 COLINT

Restores the initial color.

Format COLINIT "color bank name", color number

Parameters Color bank name

Strings designating target:

BG BG screens

SP Sprites

GRP Graphics

 Color number 0 – 255

Returns None

Error

35-2 COLSET

Assign new color

BG number 0 is the background color

Format COLSET "color bank name", color number, "color data string”

Parameters Color bank name *Refer to COLINIT

 Color number *Refer to COLINIT

 Color data string In hexadecimal (base 16)

notation(the order is RRGGBB)

Each element will be 00~FF

(e.g.)"FF00AA"

Returns None

Error

35-3 COLREAD()

Retrieves designated color data. (Each element 0~255)

Format COLREAD("color bank name", color number), R, G, B

Parameters Color bank name *Refer to COLINIT

 Color number *Refer to COLINIT

 R Variable for red

 G Variable for green

 B Variable for blue

Returns None

Error

35-4 CHRINIT

Resets designated character to initial state.

Format CHRINIT "character name"

Parameters Character name

Strings designating character:

BGU0

:

BGU3

User BG character

SPU0

:

SPU7

User sprite character

Returns None

Error

35-5 CHRSET

Define a single character (8x8 pixel units)

Format CHRSET “character name”, character number, “graphic string”

Parameters Character name *Refer to CHRINIT

 Character Number 0 – 255

 Graphic string 16 color 8x8 pixel character

data is expressed in

hexadecimal (base 16) notation

Returns None

Error

(e.g.) A hexadecimal string has been generated from the character shown above:

“5554441255444111544411164441116644111666411166671116667731666777”

(each character represents 1 pixel)

35-6 CHRREAD()

Retrieves data for the designated character.

Format CHRREAD("character name", character name), C$

Parameters Character name *Refer to CHRINIT

 Character Number *Refer to CHRINIT

 C$ Variable for graphic string

*Refer to CHRSET

Returns None

Error

36 Basic Sprite Commands

The following commands allow you to perform actions such as starting and pausing

sprite movement:

SPPAGE, SPSET, SPCLR, SPHOME

36-1 SPPAGE

Designates the screen to be used for sprites.

Although the lower screen can be selected, it is generally used for the keyboard.

User characters cannot be displayed on this screen, and only the simple graphics

already pre-loaded can be used.

Format SPPAGE screen

Parameters Screen 0 = Upper Screen

1 = Lower Screen

Returns None

Error

36-2 SPSET

Sprite definition (activation).

Activates a sprite designated by a control number. The coordinates are reset to 0,0.

Once a sprite has been activated using SPSET and you wish only to change the

character number, use the SPRCHR command.

Format SPSET control number, character number, palette number, horizontal

rotation, vertical rotation, order of precedence

Parameters Control number 0 – 99

 Sprite character number 0~511 (for display on lower

screen 0~117）

 Palette number 0～15

 horizontal rotation 0=None

1=Horizontal rotation

 Vertical rotation 0=None

1=Vertical rotation

 Order of Priority 0 In front of console

1 In front of BG (front

layer)

2 Between 2 BG layers

3 Behind rear BG layer

The order of priority for sprite

display is determined by the

control number: the sprite with

the lower number will be

displayed further forward.

 Width 8, 16, 32, 64

(Unless specified, this value will

be 16)

 height 8, 16, 32, 64

(Unless specified, this value will

be 16)

Returns None

Error

The following combinations of height and width values cannot be assigned: 8x64,

16x64, 64x8, 64x16

36-3 Rules for Storing Sprites

When the SPSET command has been used to assign sprite size, attention should be

paid to the size and the character number of the displayed sprite. A character

defined in the normal way will be stored as a unit of 16x16 pixels. If a character of a

different size is used, its positioning will have to be adjusted as required.

8x8 16x8 32x8 64x8(Not

Permitted)

8x16 16x16 32x16 64x16(Not

Permitted)

8x32 16x32 32x32 64x32

8x64 (Not

Permitted)

16x64 (Not

Permitted)

32x64 64x64

36-4 SPCLR

Erase sprite (Prevent sprites being activated)

Format SPCLR control number

Parameters Control number 0~99 (if omitted, all sprites will

be erased)

Returns None

Error

36-5 SPHOME

Designating Start Point for Sprite Display

When this command is omitted, the start point for the display will be assigned as top

left (0,0).

Format SPHOME control number, x, y

Parameters Control number 0~99

 x 0~63

 y 0~63

Returns None

Error

37 Sprite Control Commands

The following commands allow you to change sprite coordinates or animate sprites:

SPOFS, SPCHR, SPANIM, SPANGLE, SPSCALE

37-1 SPOFS

Changes sprite coordinates.

Format SPOFS control number, x coordinate, y coordinate [,interpolation time]

Parameters x coordinate ±1024

(Values outside valid range may

be used)

 y coordinate ±1024

(Values outside valid range may

be used)

 Interpolation time Time taken to automatically add

interpolation between current

state and new value. (1=1/60th

sec)

Returns None

Error

37-2 SPCHR

Changes the sprite character number.

Format SPCHR control number, character number [, palette number,

horizontal rotation, vertical rotation, order of precedence]

Parameters Control number 0 – 99

 Sprite character number 0 – 511 (for display on lower

screen 0 – 117

 Palette number 0 – 15

 Horizontal rotation 0=none, 1=rotate

 Vertical rotation 0=none, 1=rotate

 Order of precedence 0 – 3

Returns None

Error

37-3 SPANIM

Displays sprite animation.

Starting with the current designated character number, using this command will

make the character number change at defined intervals, It will change within the

range of the designated number of frames.

Format SPANIM control number, number of frames, time [, loop]

Parameters Control number 0 – 99

 Number of frames 1～

 Time Time to display 1 frame

(1=1/60th sec)

 Loop 0=Endless loop, 1~ (Loop

number)

Returns None

Error

37-4 SPANGLE

This is used to modify the angle of sprites.

From the initial position, the start point for rotation will be at the top left of the sprite.

To modify the point around which the sprite rotates, use the SPHOME command.

Format SPANGLE control number, angle [, interpolation time, change

direction]

Parameters Control number 0 – 31

 Angle 0 – 360 (Values outside valid

range may be used)

 Interpolation time Time taken to automatically add

interpolation between current

state and new value. (1=1/60th

sec)

 Change direction 1=Clockwise

-1=Anticlockwise

(if omitted, will be clockwise)

Returns None

Error

37-5 SPSCALE

Changes the scaling of sprites.

When using SPANGLE to rotate a sprite with a scale of 200%, any section of the

sprite that protrudes beyond the rectangular area corresponding to this 200% will

not be displayed.

Format SPSCALE control number, scale [, interpolation time]

Parameters Control number 0 – 31

 Scale 0 – 200 (proportion in percent)

 Interpolation time Time taken to automatically add

interpolation between current

state and new value. (1=1/60th

sec)

Returns None

Error

38 Commands for Obtaining Sprite Data

The following commands allow a whole range of sprite data to be obtained:

SPCHK(), SPREAD(), SPSETV, SPGETV()

38-1 SPCHEK()

Automatically retrieves interpolation data.

Format Variable = SPCHK(control number)

Parameters Control number 0 – 99

Returns Number Interpolation has ended when

value reaches 0.

b00 Coordinate

b01 Angle

b02 Scale

b03 Play Animation

Error

38-2 SPREAD()

This command is used to read sprite data.

This allows you to obtain data relating to angles and new coordinates when

interpolation is used.

Format SPREAD (control number), X, Y [, A][, S][, C]

Parameters Control number 0 – 99

 Scale 0 – 200 (proportion in percent)

 X Variable for obtaining X

coordinate

 Y Variable for obtaining Y

coordinate

 A Variable for obtaining angle

 S Variable for obtaining scale

 C Variable for obtaining character

data

Returns None

Error

38-3 SPSETV

Pre-set Variable Assigned to Each Sprite

Users are free to use these variables as they like. For instance, each sprite could

retain data on health, attack and defense power without needed to program an array.

Use these variables by substituting them for the initial values.

Format SPSETV control number, variable number, value

Parameters Control number 0 – 99

 Variable number 0 – 7

 Value Number

Returns None

Error

38-4 SPGETV()

This is used to read the pre-set variables assigned to each sprite.

Format Variable = SPGETV(control number, variable number)

Parameters Control number 0 – 99

 Variable number 0 – 7

Returns Number Variable control

Error

39 Sprite Collision Detection Commands

The following commands relate to collision detection for sprites:

SPCOL, SPCOLVEC, SPHIT(), SPHITSP(), SPSPHITRC()

39-1 SPCOL

This defines blocks for sprite collision detection.

If this command is not utilized, the offset will be 0,0 and the size will be that defined

by the SPSET command.

Format SPCOL control number, x, y width, height, scale adjustment [, group]

Parameters Control number 0 – 99

 x ±64

 y ±64

 Width 1 – 64

 Height 1 – 64

 Scale Adjustment FALSE=Ignore

TRUE=Synchronize

 Group 0～255 (Group settings in bit

units)

Returns None

Error

You can allocate bits as you like within the group. For instance, the 4 lower bits could

be player data, while the 4 upper bits could be enemy data. For collision detection

between players and enemies, insert an &HF0 into the group.

b00 Player

b01 Player’s Shots

b02 Effect

b03 Item

b04 Enemy

b05 Enemy’s Shots

b06 Boss

b07 Background Obstacles

39-2 SPCOLVEC

This defines movement speed for use in collision detection.

This is used when the amount of movement (displacement) needs to be defined.

When this is not required, the displacement can be omitted. When this command is

not run, it will be automatically calculated using the time assigned with SPOFS and

the value obtained from the destination. When movement time is not assigned with

SPOFS, the displacement will be given as 0.

Format SPCOLVEC control number, displacement x displacement y

Parameters Control number 0 – 99

 Displacement x ±16.0

 Displacement y ±16.0

Returns None

Error

39-3 SPHIT()

This detects sprite collision.

This command is used to detect collision between sprites from the same group.

When sprites collide, data from the other sprite will be preserved as system

variables.

Format SPHIT(control number, [initial control number])

Parameters Control number 0 – 99

 Initial control number 0～99 (when omitted, it will be

all numbers excluding your

own)

Returns Results TRUE = Collision

Error

39-4 SPHITSP()

This detects collision between sprites.

This command is used to detect collision between the user's sprites, and those of the

designated opponent's sprites. Following collision, the opponent's sprite data will be

retained as system variables.

Format SPHITSP (control number, opponent control number)

Parameters Control number 0 – 99

 Opponent control number 0 – 99

Returns Results TRUE = Collision

Error

39-5 SPHITRC()

This detects collision between sprites and blocks.

This command detects collision between sprites and blocks of the size designated by

you. Following collision, the sprite data of the sprite defined as the opponent will be

retained as system variables.

Format SPHITRC (control number,start x, start y, width, height [,

displacement x, displacement y])

Parameters Control number 0 – 99

 x start point ±1024

 y start point ±1024

 Width 1 –

 Height 1 –

 Displacement x ±16.0

 Displacement y ±16.0

Returns Results TRUE = Collision

Error

40 BG Basic Commands

The following commands allow you to perform tasks such as designating the BG

screen to be controlled, altering display offsets and writing onto assigned BG screen

positions:

BGPAGE, BGCLIP, BGOFS, BGPUT, BGREAD()

40-1 BGPAGE

Designates the BG screen to be controlled.

Format BGPAGE screen

Parameters Screen 0=Upper Screen

1=Lower Screen

Returns None

Error

40-2 BGCLR

Clears the BG screen (filling it with character 0)

Format BGCLR [layer]

Parameters Layer 0=Foreground,1=Background

(Applies to both if not specified)

Returns None

Error

40-3 BGCLIP

Assigns display parameters (for all layers).

Format BGCLIP x start point, y start point, x end point, y end point

Parameters x start point 0～31

 y start point 0～23

 x end point 0～31

 y end point 0～23

Returns None

Error

40-4 BGOFS

Alters offset of BG screen display.

Format BGOFS layer, x coordinate, y coordinate [, interpolation time]

Parameters Layer 0=Foreground

1=Rear

 x coordinate Horizontal coordinate (0 – 511)

(Values outside valid range may

be used)

 y coordinate Vertical coordinate (0 – 511)

(Values outside valid range may

be used)

 Interpolation time Time taken to automatically add

interpolation between current

state and new value. (1=1/60th

sec)

Returns None

Error

40-5 BGPUT

Writes onto designated location on BG screens.

Format BGPUT layer, x coordinate, y coordinate, character number, palette

number, horizontal rotation, vertical rotation

Parameters Layer 0=Foreground

1=Rear

 x coordinate Horizontal coordinate (0 – 63)

(Values outside valid range may

be used)

 y coordinate Vertical coordinate (0 – 63)

(Values outside valid range may

be used)

 Character number 0 – 1023

 Palette number 0 – 15

 Horizontal rotation 0=None,

1=rotation

 Vertical rotation 0=None,

1=rotation

Returns None

Error

40-6 BGFILE

This command fills the BG screen within assigned block limitations.

Format BGFILL layer, start x, start y, end x, end y, character number, palette

number, horizontal rotation, vertical rotation

Parameters Layer 0=Foreground

1=Rear

 x start point 0 – 63

 y start point 0 – 63

 x end point 0 – 63

 y end point 0 – 63

 Character number 0 – 1023

 Palette number 0 – 15

 Horizontal rotation 0=None,

1=rotation

 Vertical rotation 0=None,

1=rotation

Returns None

Error

40-7 BGREAD()

Obtains data from designated location on BG screens.

Format BGREAD(layer, x coordinate, y coordinate), CHR, PAL, H, V

Parameters Layer 0=Foreground

1=Rear

 x coordinate Horizontal coordinate (0 – 63)

(Values outside valid range may

be used)

 y coordinate Vertical coordinate (0 – 63)

(Values outside valid range may

be used)

 CHR Variable for character number

 PAL Variable for palette number

 H Variable for horizontal rotation

 V Variable for vertical rotation

Returns None

Error

41 BG Commands (Expert)

The following commands can be used to obtain data on BG status, draw special

shapes, or fill the screen with color:

BGCHK(), BGCOPY, BGPUT, BGFILL, BGREAD()

41-1 BGCHK()

Obtains data on the status of the BG screen which has been modified using the

BGOFS command.

Format BGCHK(layer)

Parameters Layer 0=Foreground,

1=Rear

Returns Number Interpolation has ended when

value reaches 0.

b00 Coordinate

Error

41-2 BGCOPY

This command copies the assigned block area of the BG screen.

Format BGCOPY layer, start x, start y, end x, end y, transfer destination x,

transfer destination y

Parameters Layer 0=Foreground,

1=Rear

 x start point 0 – 63

 y start point 0 – 63

 x end point 0 – 63

 y end point 0 – 63

 Transfer destination x 0 – 63

 transfer destination y 0 – 63

Returns None

Error

41-3 Screen Data Features

◆Screen Data

This combines the character and palette numbers of the BG screen, as well as data

on horizontal and vertical rotation. It is expressed in a 16-bit value.

b00

b01

b02

b03

b04 10 bit character number (0 – 1023)

b05

b06

b07

b08

b09

b10 Horizontal rotation (0=OFF, 1=ON)

b11 Vertical rotation (0=OFF,1=ON)

b12

b13 4 bit palette number (0~15)

b14

b15

◆Screen Data Character String

The screen data is converted into a 4-digit, hexadecimal number.

(e.g.)

If screen data = &H103F

The screen data character string will be "103F"

41-4 BGPUT (Expert)

◆Writing Screen Data

Format BGPUT layer, x coordinate, y coordinate, screen data

Parameters Layer 0=Foreground,

1=Rear

 x coordinate 0 – 63

 y coordinate 0 – 63

 Screen Data Hexadecimal 4 – figure value

Returns None

Error

◆Write Screen Data Character String

Format BGPUT layer, x coordinate, y coordinate, character string

Parameters Layer 0=Foreground,

1=Rear

 x coordinate 0 – 63

 y coordinate 0 – 63

 Strings 4 character strings

Returns None

Error

41-5 BGFILL(Expert)

◆Fill Screen Data Area

Format BGPUT layer, x coordinate, y coordinate, character stringBGFILL layer,

start x, start y, end x, end y, screen data

Parameters Layer 0=Foreground,

1=Rear

 x start point 0 – 63

 y start point 0 – 63

 x end point 0 – 63

 y end point 0 – 63

 Screen Data Hexadecimal 4 – figure value

Returns None

Error

◆Fill Screen Data Area From Character String

Format BGFILL layer, start x, start y, end x, end y, character string

Parameters Layer 0=Foreground,

1=Rear

 x start point 0 – 63

 y start point 0 – 63

 x end point 0 – 63

 y end point 0 – 63

 Strings 4 character strings

Returns None

Error

41-6 BGREAD(Expert)

◆Obtain Screen Data

Format BGREAD (layer, x coordinate, y coordinate), SC

Parameters Layer 0=Foreground,

1=Rear

 x coordinate 0 – 63

 y coordinate 0 – 63

 SC Variable to obtain screen data

Returns None

Error

◆Obtain Data Using Screen Data Character String

Format BGREAD (layer, x coordinate, y coordinate), SC$

Parameters Layer 0=Foreground,

1=Rear

 x coordinate 0 – 63

 y coordinate 0 – 63

 SC$ Variable to obtain screen data

character string

Returns None

Error

42 Basic Audio Commands

The following commands relate to playing sound effects and background music. For

information on creating music using MML, please see the relevant Expert page:

BEEP, BGMPLAY, BGMSTOP, BGMCHK(), BGMVOL

42-1 BEEP

Plays a simple warning sound effect.

Format BEEP [waveform number [,pitch [,volume [,panpot]]]]

Parameters Waveform number 0～69 (if omitted, number is 0)

 Pitch -8192 plays sound 2 octaves

lower, 0 is the original sound,

8192 plays it 2 octaves higher.

 Volume 0=No sound

127=Maximum

 Panpot 0=from left

64=from center

127=from right

Returns None

Error

●How to Calculate Pitch and Scale

An octave is made up of a scale with a resolution of 4096 different elements, so to

calculate the pitch (P) of a half tone, you can use P=4096/12. Calculating pitch using

this value will work out as follows:

<Changes to Musical Interval>

Ｃ =P*0

Ｃ＃=P*1

Ｄ =P*2

Ｄ＃=P*3

Ｅ =P*4

Ｆ =P*5

Ｆ＃=P*6

Ｇ =P*7

Ｇ＃=P*8

Ａ =P*9

Ａ＃=P*10

Ｂ =P*11

42-2 BGMPLAY

Starts playing song. (Up to 8 songs can be played at the same time).

When specifying the volume for a track, the track number cannot be omitted. Track

numbers after 128 will play songs you have written yourself.

Format BGMPLAY [track number,] song number [, track volume]

Parameters Track number 0~7 (Will be 0 unless specified)

 Song number 0～29

128～255

 Track Volume 0～127

Returns None

Error

42-3 BGMSTOP

Stops playing song.

By assigning a Fade Time (measured in seconds), you can cause the music to

steadily reduce in volume.

When the track number is omitted, a BEEP command can be used to stop the sound

effects and all tracks being played.

Format BGMSTOP [track number] [, fade time]

Parameters Track number 0~7 (Will be 0 unless specified)

 Fade Time Time Until end (0=Sudden

Stop)

Returns None

Error

42-4 BGMCHK()

This lets you check on current music status.

Format Variable=BGMCHK([track number])

Parameters Track number 0~7 (Will be 0 unless specified)

Returns Number FALSE=Music stopped

TRUE=Music playing

Error

42-5 BGMVOL

This adjusts the volume for each track.

Format BGMVOL [track volume,] volume

Parameters Track number 0~7 (Will be 0 unless specified)

 Track Volume 0 – 127

Returns None

Error

43 Audio Commands (Expert)

The following commands are for use when creating music using MML, or exchanging

MML data:

BGMSET, BGMSETD, BGMCLEAR, BGMPLAY, BGMSETV, BGMGETV(), BGMPRG

43-1 BGMSET

This saves song data created using MML.

Format BGMSET song number, MML

character string [, MML

character string 2...]

Parameters Song number 128 – 255

 MML character string This describes song data as a

character string.

 MML character string 2 If song data cannot all be

expressed in a single character

string, it can be divided into

multiple strings.

Returns None

Error

43-2 BGMSETD

This saves pre-set MML data.

When describing MML data in a string, you need to use the expression DATA 0 to

signify the end of the MML data.

Format BGMSETD song number, @label

BGMSETD song number, variable$

Parameters Song number 128 – 255

 @label Label name specifying data

saved in MML form.

Returns None

Error

e,g, @MMLDATA

DATA ""CDEFGAB＜C＞""

DATA ""CCCEEEGGG""

DATA 0

'---

BGMSETD 128, @MMLDATA

BGMPLAY 128

43-3 BGMCLEAR

This clears saved song data.

Format BGMCLEAR [song number]

Parameters Song number 128 – 255 (if not specified, will

include all song data）

Returns None

Error

43-4 BGMPLAY(Expert)

Use MML directly and play music.

When playing a track using MML, the track will be defined with a 0. The track’s

volume cannot be adjusted.

(If a track between 1- 7 is assigned, it will result in an error)

Format BGMPLAY MML character string [,MML character string 2...]

Parameters MML character string Song data is described as a

character string.

 MML character string 2 If song data cannot all be

expressed in a single character

string, it can be divided into

multiple strings.

Returns None

Error

43-5 BGMSETV

This command writes to variables within MML.

Format BGMSETV track number, variable number, variable

Parameters Track number 0 - 7

 Variable number 0 – 7 (MML variable $0 - $7)

 Value 0 - 255

Returns None

Error

43-6 BGMGETV()

Read variables in MML.

The cycle in which replacement variables within MML will be reflected in the program

lasts for 1/60th of a second. Be sure to leave at least a period of VSYNC 1.

Format Variable=BGMGETV(track number, variable number)

Parameters Track number 0 - 7

 Variable number 0 – 7 (MML variable $0 - $7)

Returns Number -1 = Track Currently Stopped

Error

43-7 BGMPRG

Save waveforms of instruments that can be used with MML.

For more information on the A, D, S, R commands used to define the waveform

envelope, see MML Commands@E.

Format BGMPRG instrument number, [key,] [A, D, S, R,] waveform

character string

Parameters Instrument number 224 – 255

 A Attack 0 – 127

 D Decay 0 – 127

 S Sustain 0 – 127

 R Release (Until Disappears) 0 – 127

 Waveform character string Hexadecimal character string

(requires 64 or 128 characters)

Returns None

Error

Waveform character strings are 8-bit values displayed in two-digit hexadecimal

form.

If the digits inside the blue frame above are converted into waveform character

strings, they will appear like this:

"00204060402000E0C0A0C0E0"

In this way, 64-character waveform strings will be treated as the waveform for a

single cycle. A 128-character string can be used to define a more complex waveform.

While complex waveforms used to sample real instruments cannot be saved, it can

be used as a basic synthesizer.

44 DS Wireless Play

■What you will need

- Two Nitendo DSi systems on which Petit Computer has been saved.

<Procedure>

1. Turn the system’s power ON.

2. Touch Petit Computer on the DSi Menu Screen.

3. When sending or receiving data, select “File Management” from the Home Menu

and then touch either the “Send” or “Receive” button. Alternatively, after

launching BASIC, you can use the SENDFILE command to transmit resources

and the RECVFILE command to receive them.

4. For more information about files, resources and the transmission and receipt of

data, please see “13. Files and Resources”.

Important Wireless Communication Guidelines

During wireless game play, an icon () will appear on either the upper or lower

screen showing the strength of the wireless signal. The icon has four modes

depending on the signal strength, asa shown below.

Number of Bars 0 1 2 3

Signal Strength

Weaker Stronger

Begin with the distance between systems at about 30 feet or less and move closer or

farther apart as desired, keeping the signal strength at two or more bars for best

results.

Keep the maximum distance between systems at 65 feet or less.

The systems should face each other as directly as possible.

Avoid having people or other obstructions between the DS systems.

Avoid interface from other devices. If communication seems to be affected by other

devices (wireless LAN, microwave ovens, cordless devices, computers), move to

another location or turn off the interfering device.

To play wirelessly, you must first set wireless Communications to ON in the Nintendo

DSi System settings.

